Chapter 9. Object graphics

9.1. Introduction

Object graphics is a complete graphics system; it is an alternative to the direct graphics system. It provides an object-
oriented interface to OpenGL, a specification for writing cross-platform graphics applications implemented widely
amongst modern graphics cards.

The object graphics system is a more modern graphics system than direct graphics. It is a good choice for creating nearly
any visualization, but particularly useful for 3-dimensional and interactive visualizations. Its main drawback is that

more setup is required to create the hierarchy of objects necessary to display a scene. The iTools provide, amongst other
things, a simple procedural interface to object graphics visualizations, making object graphics usable from the command
line. A more detailed comparison of the features of object graphics to direct graphics is covered in Section 6.1, “Direct
graphics vs. object graphics” [p. 135].

Object graphics can be rendered either using hardware (an OpenGL enabled graphics card) or software (the Mesa
OpenGL emulation library). The output when using hardware rendering is highly dependent on how well the graphics
card supports OpenGL. Software rendering is more reliable, but is slower. Generally, hardware rendering is tried first
and software rendering is used if there are problems.

If the output from the examples in this chapter looks odd, try using software rendering. All the examples in this chapter
accept a RENDERER keyword that can be set to 1 to force the example to use software rendering. To use software
rendering for all object graphics displays by default, use

IDL> pref set, 'IDL GR X RENDERER', 1, /commit
on Unix platforms, or
IDL> pref set, 'IDL GR WIN RENDERER', 1, /commit

on Windows.

9.2. Displaying an image in object graphics

The first example using object graphics will be displaying an image. To make any object graphics scene, a hierarchy of
objects is created; each object in the tree has its own task in the final display. The simplest scene has a view, a model,
and a graphics atom connected together in a hierarchy: a view at the top, a model beneath it, and an atom at the bottom.

First, read in an image to display:

IDL> peopleFilename = filepath('people.jpg', subdir=['examples', 'data'l])
IDL> ali = read image(peopleFilename)

IDL> help, ali

ALI BYTE = Array[3, 256, 256]

Next, let’s create the required objects and place them into a hierarchy to display this image data. At the top level, an
IDLgrView is created to define the coordinate system and other top-level properties of the visualization:

IDL> view = obj new('IDLgrView', viewplane rect=[0, 0, 256, 256])

The VIEWPLANE_RECT keyword here specifies that the lower left corner of the view is (0, 0) and that the view is 256
units wide and 256 units tall. The coordinates of the data objects, here in pixel coordinates, must fall in this range to be

243

Object graphics — Displaying an image in object graphics

visible. There are several techniques to scale the data into the view volume, but setting the VIEWPLACE_RECT is a good
method for displaying images. The model is responsible for any transformations like rotating, scaling, or translating that
are needed:

IDL> model = obj new('IDLgrModel')

The objects must be connected into a hierarchy. This is done via the add method for the container objects like the view
and model:

IDL> view->add, model
Next, create the graphics atom that represents the image and add it to the hierarchy as well:

IDL> image = obj new('IDLgrImage', ali)
IDL> model->add, image

Note that the IDLgrImage object is smart enough to determine the interleave of the image. Finally, a destination must be
created to render the visualization:

IDL> window = obj new('IDLgrWindow', dimensions=[256, 256])

There are several destination classes for rendering output to graphics windows, memory buffers, VRML files, the system
clipboard, or directly to a printer. The last step is to tell the destination to draw the view:

IDL> window->draw, view

This should produce the following display:

7))] IDL Object Window 32

Display of example data file people. jpg using object graphics.

All IDL’s provided classes, not just the object graphics classes, use a property interface that coordinates the keywords to
the init, getProperty, and setProperty methods. For example, the image’s INTERLEAVE property can be retrieved after
the image is created:

IDL> image->getProperty, interleave=interleave

IDL> print, interleave
0

Properties can be set as well, but remember that the window must be redrawn to see the changes:

IDL> image->setProperty, channel='ff0000"'x
IDL> window->draw, view

Properties can also be set when the object is created with OBJ_NEW, i.e., when calling the init method. Some properties
cannot be used in all the property handling methods. The documentation for the class has a “Properties” page that
describes each property and indicates in which methods it can be used.

244

Object graphics — The theory

All the objects should be destroyed using OBJ_DESTROY when finished with them. Because the objects in the hierarchy
are connected, freeing the top-level container, the view in this case, will free all the objects in the hierarchy:

IDL> obj destroy, [view, window]

The window object is not part of the hierarchy so it must be freed as well, but it is freed automatically if the window is
closed normally, i.e., by clicking the “X” in the title bar of the window. It can be convenient to use the GRAPHICS_TREE
property of a window to associate a particular graphics hierarchy with the window. In that case, freeing the window will
cause the graphics hierarchy to be freed as well.

9.3. The theory

Classes in the object graphics system can be broken down into fives types: containers, graphics atoms, destinations,
attributes, and helpers. Only containers and graphics atoms combine to form the object graphics hierarchy. Destinations
draw the object graphics hierarchy to output destinations like a graphics window, the system clipboard, a memory buffer,
or a graphics file. Attribute objects, like font or symbol objects, describe some aspect of graphics atoms. Helpers do
various calculations related to object graphics.

Containers all inherit from IDL_Container and, therefore, share several methods to deal with their children. The add
method builds the hierarchy:

container->add, objects [, position=index]

The other methods are more useful for general containers, but occasionally used in graphics hierarchies. The get method
can retrieve children of a container:

result = container->get([, /all [, isa=classname(s)] | , position=index] [, count=variable])
There are a few methods to query a container:

result = container->count()
result = container->isContained(object [, position=variable])

There are also some methods that can reorder or remove the children of a container:

container->move, source, destination
container->remove [, child object] [, position=index] [, /all]

All IDLgr container classes also have a getByName method that finds children in the object graphics hierarchy by
combining the objects’ NAME property with separating /s to form a string similar to a file path:

child = container->getByName(name)

Each container also has a purpose beyond simply containing other objects. The container classes and their uses are
described in Table 9.1, “Object graphics container classes” [p. 245].

Table 9.1. Object graphics container classes

Class Description

IDLgrScene An optional top-level container, a scene represents the entire visualization. Scenes contain views or
viewgroups.

IDLgrViewGroup A viewgroup is similar to a scene. Viewgroups can contain views or objects outside of the object

graphics hierarchy. These other objects are added to a viewgroup for automatic destruction when the
object graphics hierarchy is freed. Viewgroups are not required, but are convenient to free related
objects automatically.

IDLgrView A view represents a viewpoint into the 3-dimensional scene of the graphics. For example, it has
properties for setting the size of the view volume (the rendered portion of the scene), the location

245

Object graphics — The theory

Class Description
of the eye, and the projection used by the view. It is necessary to display a graphics atom. A view

contains models.

IDLgrModel A model is responsible for transforming (rotating, translating, or scaling) the child objects it contains.
Models contain other models or graphics atoms. They are required to display graphics atoms.

Graphics atoms represent something that will be displayed in the scene. Without them, only the background color will
appear. They hold the data and its visualization properties. The graphics atom classes are listed below.

Table 9.2. Object graphics atom classes

Class Description

IDLgrAxis Represents a single axis with its labels, tickmarks, and title.

IDLgrContour Represents a contour plot.

IDLgrlmage Represents an image (2- or 3-dimensional array with or without an alpha channel with any interleave).
IDLgrLight Represents a light source: ambient, directional, positional, or spotlight.

IDLgrPlot Represents a line or scatter plot.

IDLgrPolygon Represents a set of polygons.

IDLgrPolyline Represents a set of line segments.

IDLgrROI Represents a region of interest.

IDLgrROIGroup Represents a group of regions of interest.

IDLgrSurface Represents a surface plot of various styles: points, wire frame, solid, ruled, or lego.
IDLgrVolume Represents a 3-dimensional volume of data.

A light graphics atom is slightly different than other atoms in that it does not directly appear, but changes the appearance
of the other atoms displayed by highlighting and shading the contours of 3-dimensional objects in the scene.

Several atoms can be combined to form reusable components called composite classes, like IDLgrLegend and
IDLgrColorbar provided in the IDL library. These classes contain a model with several children that together perform
some higher-level function. An example of creating a composite class is shown in Section 9.10, “Composite graphics
classes” [p. 282].

Table 9.3. Object graphics composite classes

Class Description
IDLgrColorbar Represents a colorbar with an axis and title.
IDLgrLegend Represents a legend showing a correspondence between glyphs and names.

The attribute classes specify a reusable attribute of graphics atom classes. An object of one of these classes can be used
as an attribute of several atoms. Attribute classes are not part of the graphics hierarchy, so they are often added to a
viewgroup to be cleaned up automatically when the group is destroyed.

Table 9.4. Object graphics attribute classes

Class Description

IDLgrFont Attribute of IDLgrText objects representing a typeface, style, weight, and size.

246

Object graphics — The theory

Class Description

IDLgrPalette Attribute of several atom classes representing a color table.

IDLgrPattern Attribute of IDLgrPolygon objects describing the fill pattern.

IDLgrSymbol Attribute of IDLgrPlot and IDLgrPolyline objects describing a plotting symbol.

Some graphics atom classes, like IDLgrText and IDLgrIimage, also act as attributes. For example, an IDLgrText object
can be added directly to the object graphics hierarchy or it can be the value of the TITLE property of an IDLgrAxis object.
In the second case, the text object is acting as an attribute: it is not part of the hierarchy, it can be used for other text
values, and it will not be cleaned up automatically with the hierarchy unless it was also added to a viewgroup.

Destination classes represent output formats; they are the analog of graphics devices in direct graphics. Each destination
has a draw method used to render a graphics hierarchy:

dest->draw, scene
where scene is the top-level container in an object graphics hierarchy: a scene, viewgroup, or view.
Table 9.5. Object graphics destination classes

Class Description

IDLgrBuffer Memory buffer that can be read as an image after the graphics are drawn to it; this is the object
graphics analog to a direct graphics pixmap.

IDLgrClipboard The system clipboard whose contents can then be pasted into other applications. The clipboard is also
used to output vector graphics.

IDLgrPDF 8.0 Destination used to send output to a PDF file.

IDLgrPrinter Destination used to send output directly to a printer.

IDLgrVRML Destination to send output to a VRML file.

IDLgrWindow Standard graphics window.

89the PDF destination class was added in IDL 8.0

Destinations have a GRAPHICS_TREE property that can be used to connect a graphics hierarchy to a destination. The
destination will then free the graphics hierarchy when it is destroyed and the top-level container of the hierarchy does not
need to be passed to the destination’s draw method.

Helper classes perform a variety of tasks related to object graphics.

Table 9.6. Object graphics helper classes

Class Description

IDLgrMPEG Creates MPEG movies.

IDLgrF ilterChain®* Container class containing shader objects to be applied to an image object.

IDLgrShaderG‘4 Provides access to doing image processing computations on the graphics processing unit (GPU).
IDLgrShader).’i’ytscl6'4 Subclass of IDLgrShader that applies a BYTSCL operator to an image object.

IDLgrShaderConv0136'4 Subclass of IDLgrShader that applies 3 by 3 convolution operators to an image object.
IDLgrTessellator A tessellator object decomposes a polygon into a set of triangles.

Trackball Trackball objects transform mouse movements to transformation matrices; a useful utility for rotating
the contents of models in widget programs.

4the shader classes were added in IDL 6.4

247

Object graphics — The theory

The structure of the object graphics hierarchy is shown in the diagram below. It must be rooted with a scene, view, or
viewgroup. Several views can be added if the hierarchy starts with a scene or viewgroup. Each view can be positioned
independently in the display. A model must be present to display a graphics atom. Models can be nested arbitrarily deep
to allow for specific branches of the hierarchy to be transformed, i.e., rotated, scaled, or translated without affecting the

rest of the hierarchy.

Figure 9.1. General object graphics hierarchy

IDLgrScene
\ 1*

IDLgrViewGroup

.

IDLgrView

1*
1*
IDLgrModel
>

*

1

graphics atoms

The general structure for an object graphics hierarchy can be arbitrarily complicated. The hierarchy can be rooted at a scene,
viewgroup, or view. The “1*” labels on the connections indicate one or more connections can be made.

The standard way to set and get attributes of an object in IDL is to use the object’s setProperty and getProperty methods
with the attribute (i.e., property) name as the keyword name. The IDLgr classes, as well as nearly all of the IDL’s class

library, make use of the following interface to manipulate properties:

ogr->getProperty, property name=pvalue
ogr->setProperty, property name=pvalue

Properties can also be set on the creation of an object via the inif method. The documentation for each class has a
“Properties” page with a description of each property and which methods it can be used with (some properties cannot be
set, others cannot be retrieved).

Classes in the object graphics library inherit from IDLitComponent.

248

Object graphics — A 3-dimensional example

Figure 9.2. Class diagram for objects in graphics hierarchy

IDLitComponent
IDL_Container
! I B oo
> S & & 3 N
& S 5 g 8 N $ s £
& § AN Qo $ g & R <
@ Y S N S S S S S
S & Q\'O) \/$ 2 9 > o \Q\/
& SR & &
NV
Q
IDLanROI IDLanROIGroup
T T T 1 A R B
s
F £ F s F S E e &g ¢
S § N N $ 3 3 $ < & s
N S S ¥ o & Q > 9 @ S
S Q\sb @l \Q = \/o) \/0) \Q g \/o’ \/0’
S Q Q Q\/o’ Q Q
N

Undocumented parent classes are not shown in this diagram.

9.4. A 3-dimensional example

Direct graphics and object graphics can produce similar output for most 2-dimensional graphics like images and line
plots, but object graphics has several advantages for 3-dimensional output. Object graphics are inherently 3-dimensional
—making composition of scenes with proper perspective much easier. Other, more advanced, features are also available,
like texture mapping, transparency, and cutting planes.

One important task in object graphics is to match up the display coordinates of the view volume with the data
coordinates.

In this example, instead of setting the view’s VIEWPLANE_RECT keyword (along with the ZCLIP keyword for 3-
dimensional scenes), the graphics atom’s [XYZ]COORD_CONYV will be used to scale the data coordinates into the default
view volume (-1 to 1 in each direction).

249

Object graphics — A 3-dimensional example

VIEWPLANE RECT

[PSR D
-~ %
//’ 1)0\)\

The view volume for an object graphics scene is defined by the VIEWPLANE_RECT and ZCLIP
keywords to the IDLgrView. By default, the view volume extends from -1 to 1 in each direction.

The example routine shown below, MG_SHOW_POLYGON, displays a set of vertices and a connectivity list as a
polygon. The connectivity list specifies how the vertices are connected to form polygons in the same manner as direct
graphics meshes, see Section 6.12, “Polygonal meshes” [p. 170] for a description. If no vertices are passed in, the
cowl0. sav data set in the IDL distribution is used. To run the example with the cow polygons, type:

IDL> mg show polygon

This produces the following visualization:

¥ IDL Object Window 32

Display of example data file cow10. sav using the object graphics program, MG_SHOW_POLYGON.

250

Object graphics — A 3-dimensional example

To display arbitrary polygonal meshes, vertices are passed in a three separate vectors x, y, and z and the connectivity list
is passed in through the POLYGONS keyword. The cow data set is read in if no arguments are present. The RENDERER
keyword specifies hardware (0, the default) or software (1) rendering.

pro mg_show polygon, x, y, z, polygons=polylist, renderer=renderer
compile opt strictarr

; default data set is a cow
if (n_params() ne 3) then begin
; restore cow.sav

filename = filepath('cowl@.sav', subdir=['examples', 'data'l)
restore, filename=filename
endif

Next, the basic object graphics hierarchy is created, rooted at a view:

; view is the top-level object in this hierarchy
view = obj new('IDLgrView', color=[200, 200, 200])

; the model controls the transformation matrix (rotation, translation, scaling)
model = obj new('IDLgrModel')

view->add, model

; the polygon itself

polygon = obj new('IDLgrPolygon', x, vy, z, $; the vertices
polygons=polylist, $; how the vertices form polygons
color=[100, 80, 25], $
shading=1) ; Gouraud shading

model->add, polygon

We have created the left most side of the final hierarchy, which will look like the following:

view
model lightmodel
polygon xaxis yaxis zaxis directionalLight ambientLight

A separate model is created for the lights so that the polygon can be rotated independently from the lights. Two lights are
created and added to lightModel: a directional light (type=2) and an ambient light (type=0):

; the lights are in a separate model so they don't rotate with the polygon
lightmodel = obj new('IDLgrModel')
view->add, lightmodel

directionallLight = obj new('IDLgrLight', type=2, location=[-1, 1, 1], intensity=0.7)
lightmodel->add, directionallLight

ambientLight = obj new('IDLgrLight', type=0, intensity=0.3)

lightmodel->add, ambientLlight

251

Object graphics — A 3-dimensional example

The following code scales the polygon into the view volume. All dimensions are scaled equally to preserve the aspect
ratio, so the range of each dimension is found so that the largest size can be used to calculate the coordinate conversion
function for all dimensions.

; The next few lines of code is the tricky part to scale the polygon
; correctly into the view volume.
polygon->getProperty, xrange=xr, yrange=yr, zrange=zr

; find the dimension the polygon has the largest range in and use that to
; scale the all the dimensions; alternatively, each dimension could have its
; own scaling function so each dimension takes up the same amount of display
; space no matter what its data range

ranges = [[xr], [yr]l, [zr]l]

m = max(ranges[1l, *] - ranges[0, *], maxRangeRow)

; find the coordinate conversion function that will scale the given range
; into [0, 1]
cc = norm_coord(ranges[*, maxRangeRow])

; now translate it over, so it scales the given range into [-0.5, 0.5]
cc[0] -= 0.5

; tell the polygon what the coordinate conversion function is (notice all
; dimensions use the same one, i.e., isotropic scaling)
polygon->setProperty, xcoord conv=cc, ycoord conv=cc, zcoord conv=ccC

The NORM_COORD function works well to create a coordinate conversion function as long as the scaled item is
intended to take up one unit (i.e., normalized), in this case -0.5 to 0.5. Use MG_LINEAR_FUNCTION when other sizes
are needed; see following examples for usage.

Next, x-, y-, and z-axes are created with the same coordinate conversion function as the polygon so they will be scaled in

the same manner:

; create axes with the same scaling as the cow

xaxis = obj new('IDLgrAxis', 0, range=xr, /exact, $
location=[xr[0], yr[0], zr[0]], $
xcoord_conv=cc, ycoord conv=cc, zcoord conv=cc, $
ticklen=0.025)

model->add, Xxaxis

yaxis = obj new('IDLgrAxis', 1, range=yr, /exact, $
location=[xr[0], yr[0], zr[0]], $
xcoord conv=cc, ycoord conv=cc, zcoord conv=cc, $
ticklen=0.025)

model->add, yaxis

zaxis = obj new('IDLgrAxis', 2, range=zr, /exact, $
location=[xr[0], yr[0], zr[O]], $
xcoord_conv=cc, ycoord conv=cc, zcoord conv=cc, $
ticklen=0.025)

model->add, zaxis

Often it is necessary to rotate a 3-dimensional object to get a better perspective on it. The default view of the cow would
be directly at the right side of the cow. It is rotated slightly in this example to show the top and front of the cow also:

; rotate to get a nicer original orientation
model->rotate, [1, 0, 0], 15
model->rotate, [0, 1, O], -30

Finally, an IDLgrWindow object is created to display the polygon:

252

Object graphics — The transformation matrix

window = obj new('IDLgrWindow', dimensions=[400, 400], renderer=renderer)
window->draw, view
obj destroy, view

end

This produces a static visualization of the polygon, so the view can be destroyed as soon as the window has drawn it. In
interactive visualizations, the view should be destroyed only when it will no longer be updated.

The XOBJVIEW procedure can be useful to easily produce an interactive visualization of object graphics atoms. To show
the above display using XOBJVIEW, first load the cow data set:

IDL> filename = filepath('cowl0.sav', subdir=['examples', 'data'l)
IDL> restore, filename=filename, /verbose

Next, create just the polygon object:

IDL> polygon = obj new('IDLgrPolygon', x, y, z, polygons=polylist, color=[100, 80, 25], shading=1)
Finally, pass the polygon to XOBJVIEW:

IDL> xobjview, polygon

The XOBJVIEW procedure can accept either a graphics atom or a model containing atoms or other models. Be sure to
clean up the polygon object when finished with it:

IDL> obj destroy, polygon

9.5. The transformation matrix

A transformation matrix is a 4 by 4 matrix representation of the orientation of graphic atoms and of operations such

as rotations, translations, and scalings to be performed on them. In object graphics, it is contained in the TRANSFORM
property of an IDLgrModel and is applied to all the objects under the model in the graphics hierarchy. An atom may
have several transformation matrices applied to it, not just the transform of its immediate parent, because of the
allowance for models to contain other models. To get the cumulative transformation matrix applied to an object, use the
object’s getCTM method.

A transformation matrix 7 is applied to a point x by the equation
newX = x # T

Multiple transformations can be composed by multiplying them together first before applying to the vector. To apply
transform 70, followed by transform 7'/ do

newX = (x # TO) # T1
or
new = x # (TO # T1)
For an example, let’s look at the transformation matrix held by a model as several transformations are applied to it. First,
create a model:
IDL> model = obj new('IDLgrModel')
Its transformation matrix is held in the TRANSFORM property:

IDL> model->getProperty, transform=transform
IDL> print, transform
1.0000000 0.0000000 0.0000000 0.0000000

253

Object graphics — The transformation matrix

0.0000000 1.0000000 0.0000000 0.0000000
0.0000000 0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 0.0000000 1.0000000

The default transformation matrix is the identity matrix, indicating no transformation. Now, let’s translate the model and
see the effect on the transformation matrix:

IDL> model->translate, 2, 3, 4

IDL> model->getProperty, transform=transform
IDL> print, transform

1.0000000 0.0000000 0.0000000 2.0000000
0.0000000 1.0000000 0.0000000 3.0000000
0.0000000 0.0000000 1.0000000 4.0000000
0.0000000 0.0000000 0.0000000 1.0000000

Formulas for the general relationships will be given, but it is clear from the above that the first three elements of the last
column hold the translation of the transform. Now, scale the model:
IDL> model->scale, 5, 6, 7

IDL> model->getProperty, transform=transform
IDL> print, transform

5.0000000 0.0000000 0.0000000 10.000000
0.0000000 6.0000000 0.0000000 18.000000
0.0000000 0.0000000 7.0000000 28.000000
0.0000000 0.0000000 0.0000000 1.0000000

This multiples each row by the appropriate scaling factor (again, formulas will be given later). Finally, a rotation about
the x-axis is done:

IDL> model->rotate, [1, 0, 0], 90
IDL> model->getProperty, transform=transform
IDL> print, transform

5.0000000 0.0000000 0.0000000 10.000000
0.0000000 -2.2971412e-15 -7.0000000 -28.000000
0.0000000 6.0000000 -2.6799981e-15 18.000000
0.0000000 0.0000000 0.0000000 1.0000000

This relationship is more complicated and affects the 3 by 3 matrix in the upper-right of the transformation matrix. The
general form is much more complicated than the translation and scaling formulas. When finished with the model, destroy
it:

IDL> obj destroy, model
For an interactive example of displaying the transformation matrix for a 3-dimensional object you can rotate, translate,
and scale, try running MG_TRANSFORM_DEMO:

IDL> mg_transform demo

This can be a useful way for getting a feel for how the transformation matrix changes as a 3-dimensional object is
controlled.

For a more mathematical specification of transformations, a translation by (D,, Dy, D,) is represented by the following
transformation matrix:

254

Object graphics — The transformation matrix

Scaling by (S, Sy, S;), each dimension can be scaled by a different factor, is represented by the following transformation

matrix:
Sy 0 0 0
0 S, 0 0
0 0 S 0
0 0 0 1

Finally, rotating by an angle ¢, in radians, about an axis specified by the unit vector (x, y, z) is represented by the
following matrix:

(l-cost)x2+cost (1-cost)xy-zsint (1-cost)xz+ysint 0
(1-cost)xy+zsint (1-cost)y2+cost (1-cost)yz-xsint 0
(1-cost)xz-ysint (1-cost)yz+xsint (l-cost)zz+cost 0

0 0 0 1

This is the calculation performed by the IDLgrModel: :rotate method.

The above rotation calculation is always with respect to a vector, i.e., an axis of rotation passing through the origin. It is
smart to choose an origin which is the center of rotations that will be performed on the objects in the display, i.e., usually
the middle of the display works well and is a good reason to keep the default view volume coordinates of -1 to 1 in

each dimension. But if two objects need to be rotated about differing points in the same object graphics scene, then it is
impossible to choose an origin that satisfies the requirement for both objects. In this case, the following simple technique
is used:

1. Translate the given model from the point of rotation to the origin.
2. Perform the rotation.
3. Translate the model back from the origin to the original location.

For example, this technique would be needed to create a visualization of the solar system with planets rotating both
around the sun and their own axes. This trick is also useful when scaling.

The MG_SHOW_AXES procedure is one example of applying facts about the transformation matrix to an IDL
application. It rotates the label on the axes to appear in the correct direction as the axes are rotated. Try the example with

IDL> mg_show_axes
To run the example without switching the labels, try
IDL> mg _show axes, /no_switch

The key fact used in this example, is that the element at [2, 2] indicates whether the axes labels are turned towards or
away from the viewer. This is a rotation about (0, I, 0), so

(1—cost)z2+cost<0

255

Object graphics — Properties

becomes
cost<0

which happens exactly when the angle ¢ is between 90 and 270 degrees, i.e., when the axes are turned away.

eoe [X| Axes demo eoe [X| Axes demo

A |

Running the MG_SHOW_AXES demo program without switching the
orientation of the text (on the left) and with switching (the default, on the right).

9.6. Properties

Properties are attributes of an object that are accessed through keywords to the getProperty and setProperty methods as
well as when instantiating the object, i.e., using OBJ_NEW to create the object. For example, an IDLgrSurface object
has a COLOR property to control the color of the surface. The color can be set when the surface is created or later via the
setProperty method. The current color can be obtained with the getProperty method.

The online help contains a “Properties” page for each class in the IDL library. This page lists details about each property
including a table like the one below:

Property Type Floating-point vector
Mame String not displayed
Get: Yes Set:Yes Init:Yes Registered: No

Some properties can be get, set, and used when instantiating the object.

The “Get”, “Set”, and “Init” entries of the above table indicate whether the property can be used with getProperty,
setProperty, and init, respectively. Most properties can be accessed in all three methods, but some cannot:

Property Type Flaating-point vector
Name String not displayed
Get: Yes Set: No Init: No Registered: No

256

Object graphics — Sample visualizations

Some properties are limited to where they can be accessed.

The above property can be retrieved with getProperty, but cannot be set with setProperty or init.

The “Registered” entry specifies whether the property will appear in a property sheet with the object set as the value.
The REGISTER_PROPERTIES property of the object must be set for the properties to be registered. Properties can
be registered with the IDLitComponent::registerProperty method (all the classes of objects that appear in the object

graphics hierarchy inherit from IDLitComponent).

Some common properties of graphics atoms are listed in Table 9.7, “Common /DLgr atom class properties” [p. 257].

Most atoms, except for IDLgrLight, have all the listed properties plus other properties specific to the particular atom

type.

Table 9.7. Common IDLgr atom class properties

Class
ALL

ALPHA_CHANNEL

CLIP_PLANES

COLOR

HIDE

PARENT

REGISTER_PROPERTIES

SHADER

[XYZ]COORD_CONV

[XYZ]RANGE

Description
Read-only property holding a structure with each property of the object in a field.

Floating point value for the transparency of the atom where 0.0 is completely transparent and 1.0 is
completely opaque (default).

Coefficients of clipping planes applied to the atom. The four coefficients for a plane [a, b, c, d]
clip the portion of the atom in
ax+by+cz+d>0
Color of the atom as an RGB triplet.
Boolean value determining whether to show the object and its children.
Read-only value containing the parent object in the graphics hierarchy.

A boolean value that registers the properties of this object that are marked “Registered” in the online
help. Registered properties appear in a property sheet with this object as the value. This property can
only be accessed on instantiation.

An IDLgrShader object which will be used to render the atom if a compatible graphics card is
present.

Two-element vectors specifying linear functions to map data coordinates into the display
coordinates of the view volume.

Read-only property specifying limits of the data coordinates in each dimension.

9.7. Sample visualizations

One of the easiest ways to accomplish a new task is to modify existing code that accomplishes a similar task. In the spirit

of that concept, this section presents examples of creating simple visualizations of the basic types: image display, line

plots, surface plots, contour plots, volume visualizations, polygonal mesh visualizations, and maps. All the source code

for these visualizations is provided and discussed to give a starting point for new visualizations.

The routine MG_OGIMAGE_EXAMPLE will display the given array as an image. For example, load an image and

display it:

IDL> endoFilename =

filepath('endocell.jpg', subdir=['examples', 'data'l)

IDL> endo = read image(endoFilename)

257

Object graphics — Sample visualizations

IDL> mg ogimage example, endo

This produces the following display:

Display of example data file endocell. jpg using the object graphics program MG_OGIMAGE_EXAMPLE.

The easiest way to set up the coordinate system for images is to use the VIEWPLANE_RECT property of the IDLgrView
class to define a coordinate system that corresponds to the pixels of the image (like device coordinates in direct
graphics). The dimensions of the image are retrieved and the coordinate system is defined in the following lines of
MG_OGIMAGE_EXAMPLE:

image->getProperty, dimensions=dims
view->setProperty, viewplane rect=[0, 0, dims - 1L]

The graphics hierarchy for this example is the minimal tree necessary to view any atom:

view

model

image

The complete code for MG_OGIMAGE_EXAMPLE is quite short. The trick here is to grab the dimensions of the image
from the DIMENSIONS property of the IDLgrimage and use that to set the IDLgrView’s VIEWPLANE_RECT property.
This allows an image of any interleave type to be input without complicated code to compute the dimensions.

pro mg_ogimage example, im, extra=e
compile opt strictarr

258

Object graphics — Sample visualizations

view = obj new('IDLgrView')

model = obj new('IDLgrModel')
view->add, model

image = obj new('IDLgrImage', im, _extra=e)
model->add, image
image->getProperty, dimensions=dims

view->setProperty, viewplane rect=[0, 0, dims - 1L]

window = obj new('IDLgrWindow', dimensions=dims, graphics tree=view, extra=e)
window->draw
end

Displaying images is often quite simple, but see Section 9.14, “Widgets and object graphics: tiled imagery” [p. 293]

for a more complicated example using tiling, i.e., using only the data necessary to display the part of the image currently
visible at the required zoom level. Also, see some of the plotting examples in this section for how to add axes to the
image if required.

The next example will display a line plot. A dampened sine curve will be used for the data. Read the data with

IDL> openr, lun, filepath('damp sn.dat', subdir=['examples', 'data']), /get lun
IDL> dsin = bytarr(512)

IDL> readu, lun, dsin

IDL> free lun, lun

Both x and y vectors are needed for calling the example, so create a simple index array for the x variable:
IDL> mg ogplot example, findgen(512), dsin

This should result in the following output:

X/ IDL Object Window 32

200

100

0 100 200 300 400 500

Display of example data file damp_sn. dat using the object graphics program MG_OGPLOT_EXAMPLE.

The object graphics hierarchy for this example is a bit more complicated by the addition of axes:

259

Object graphics — Sample visualizations

view

model

— T

plot xaxis yaxis

In this example, the [XYJCOORD_CONYV properties are used to scale the data coordinates into the view volume. The
MG_LINEAR_FUNCTION computes the coefficients of the linear equation to scale from the input range to the given
output range, i.e., [-0.75, 0.90] in this example

pro mg _ogplot example, x, y, _extra=e
compile opt strictarr

view = obj new('IDLgrView')

model = obj new('IDLgrModel')
view->add, model

plot = obj new('IDLgrPlot', x, y, _extra=e)
model->add, plot

plot->getProperty, xrange=xr, yrange=yr

xc = mg_linear_ function(xr, [-0.75, 0.90])

yc = mg_linear function(yr, [-0.75, 0.90])
plot->setProperty, xcoord conv=xc, ycoord conv=yc

xaxis = obj new('IDLgrAxis', direction=0, range=xr, /exact, _extra=e)
model->add, xaxis

yaxis = obj new('IDLgrAxis', direction=1, range=yr, /exact, _extra=e)
model->add, yaxis

xaxis->setProperty, xcoord conv=xc, ycoord conv=yc
yaxis->setProperty, xcoord conv=xc, ycoord conv=yc

window = obj new('IDLgrWindow', graphics tree=view, extra=e)
window->draw
end

It is important to remember to set the [XY]JCOORD_CONYV property values for the axes to the same values used for the
plot itself.
The next example creates a 3-dimensional surface visualization. To run the example program, try

IDL> restore, filename=filepath('marbells.dat', subdir=['examples', 'data'l)
IDL> mg ogsurface example, elev, color=[200, 200, 200], style=2

This should produce a display like shown below:

260

Object graphics — Sample visualizations

% IDL Object Window 32

4209

Display of Maroon Bells elevation data from marbells.dat in the example data of the IDL distribution using the
example program MG_OGSURFACE_EXAMPLE. A real-world display would need to account for the differing horizontal
and vertical scales, but our data set does not provide the necessary data to determine the vertical exaggeration.

The object graphics hierarchy puts a surface object and the three axes in the model IDLgrModel with the same coordinate
conversion functions, while putting a directional light in the lightmodel model.

view
model lightmodel
surface xaxis yaxis zaxis light

The code for the surface example is given below. Keywords to the example routine are passed along to the creation of
the IDLgrSurface. The RENDERER indicates hardware (0, the default) or software (1) rendering.

pro mg _ogsurface example, z, renderer=renderer, extra=e
compile opt strictarr

view = obj new('IDLgrView')

model = obj new('IDLgrModel')

261

Object graphics — Sample visualizations

view->add, model

surface = obj new('IDLgrSurface', z, extra=e)
model->add, surface

lightModel = obj new('IDLgrModel"')
view->add, lightModel

light = obj new('IDLgrLight', type=2, location=[-1, 1, 1])
lightModel->add, light

surface->getProperty, xrange=xr, yrange=yr, zrange=zr

xc = mg_linear_ function(xr, [-0.5, 0.5])

yc = mg_linear function(yr, [-0.5, 0.5])

zc = mg_linear function(zr, [-0.5, 0.5])

surface->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC

model->rotate, [1, 0, 0], -90
model->rotate, [0, 1, O], -30
model->rotate, [1, 0, 0], 30

xaxis = obj new('IDLgrAxis', direction=0, range=xr, /exact, $
location=[xr[0], yr[0], zr[0]])
model->add, xaxis

yaxis = obj new('IDLgrAxis', direction=1, range=yr, /exact, $
location=[xr[0], yr[0], zr[0]1])
model->add, yaxis

zaxis = obj new('IDLgrAxis', direction=2, range=zr, /exact, $
location=[xr[0], yr[0], zr[0]])
model->add, zaxis

xaxis->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC
yaxis->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC
zaxis->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zc

window = obj new('IDLgrWindow', dimensions=[500, 500], graphics tree=view, renderer=renderer)
window->draw

end

The [XYZ]JCOORD_CONYV property values would be set to the same linear function to provide an isotropic display.

Contour plots in object graphics can be difficult. To read the data, use

IDL> convecFilename = filepath('convec.dat', subdir=['examples',6 'data'l)
IDL> convec = read binary(convecFilename, data type=1, data dims=[248, 248])

Run the example program with

IDL> mg ogcontour example, convec, n_ levels=30

The contour plot should look like the following:

262

Object graphics — Sample visualizations

% IDL Object Window 32

250

200

150

100

50

0 50 100 150 200

250

The convec.dat data set is displayed in a contour plot with the demo program MG_OGCONTOUR_EXAMPLE.

The object graphics hierarchy is rooted at a viewgroup so that a palette can be added to it for automatic clean up when

the hierarchy is destroyed. A palette is considered an attribute object, used by objects to define a color table, but not part

of the graphics hierarchy.

viewgroup
l palette
view
model
fillContour lineContour xaxis

yaxis

To make a standard 2-dimensional contour plot, set the PLANAR property of the IDLgrContour and specify the z level

with the GEOMZ property. Without these keywords, the contour levels would be at the height of their respective z values

in 3-dimensional space. Furthermore, in this display, contour outlines are plotted over filled contours, but this can cause

stitching problems where there is a conflict over which contour plot is in front of the other. Use the DEPTH_OFFSET

263

Object graphics — Sample visualizations

keyword to indicate that the filled contour is in the back even though both contours have the same z value. Higher values
of DEPTH_OFFSET are farther away from the viewer.

pro mg_ogcontour_example, z, n_levels=nlevels, _extra=e
compile opt strictarr

_nlevels = n_elements(nlevels) eq OL ? 20 : nlevels
viewgroup = obj new('IDLgrViewGroup')

view = obj new('IDLgrView')
viewgroup->add, view

model = obj new('IDLgrModel')
view->add, model

fillContour = obj new('IDLgrContour', z, $
planar=1, geomz=0.0, $
n_levels= nlevels, $
/fill, c color=bytscl(bindgen(nlevels)), $
depth offset=1, $
_extra=e)
model->add, fillContour

lineContour = obj new('IDLgrContour', z, $
planar=1l, geomz=0.0, $
n_levels= nlevels, $
_extra=e)

model->add, lineContour

fillContour->getProperty, xrange=xr, yrange=yr

xc = mg_linear function(xr, [-0.85, 0.9])

yc = mg_linear function(yr, [-0.85, 0.9])
fillContour->setProperty, xcoord conv=xc, ycoord conv=yc
lineContour->setProperty, xcoord conv=xc, ycoord conv=yc

xaxis = obj new('IDLgrAxis', direction=0, range=xr)
model->add, xaxis

yaxis = obj new('IDLgrAxis', direction=1, range=yr)
model->add, yaxis

xaxis->setProperty, xcoord conv=xc, ycoord conv=yc
yaxis->setProperty, xcoord conv=xc, ycoord conv=yc

palette = obj new('IDLgrPalette')

viewgroup->add, palette

palette->l0adCT, 5

fillContour->setProperty, palette=palette

window = obj new('IDLgrWindow', dimensions=[500, 500], graphics tree=viewgroup, extra=e)

window->draw
end

Volume data can be some of the hardest (and slowest) to visualize. Let’s visualize the black hole data found in the IDL
distribution:

264

Object graphics — Sample visualizations

IDL> blackHoleFilename = filepath('cduskcD1400.sav', subdir=['examples', 'data'])
IDL> restore, filename=blackHoleFilename

Run the example on the density variable, clipping away a corner of the volume to get a look at the interior:
IDL> mg ogvolume example, density, clip planes=[-0.1, -0.1, 0.3, -1.0]

The CLIP_PLANES property is passed to the creation of the IDLgrVolume; it clips away the region described by

-0.1x-0.1y+03z-10>0

The output should look like the following:

000 [/ IDL Object Window 32

A

The black hole data stored in cduskcD1400. sav is shown as a volume with a clipping
plane showing some of the interior using the MG_OGVOLUME_EXAMPLE procedure.

The graphics hierarchy is rooted at a viewgroup to provide a place for the palette so that it can be automatically freed.
The volume and three axes are all in a single model making the hierarchy straightforward:

265

Object graphics — Sample visualizations

viewgroup
—
palette
view
model
volume xaxis yaxis zaxis

The vol is a 3-dimensional array to be displayed as a volume. The MG_OGVOLUME_EXAMPLE procedure accepts
keywords for the IDLgrVolume: :init or IDLgrWindow: :init methods, which allows us to pass in the CLIP_PLANES
keyword in the example call:

pro mg _ogvolume example, vol, extra=e

266

compile opt strictarr
viewgroup = obj new('IDLgrViewGroup')

view = obj new('IDLgrView', color=[0, 0, 0])
viewgroup->add, view

model = obj new('IDLgrModel')
view->add, model

volume = obj new('IDLgrVolume', bytscl(vol), interpolate=1l, extra=e)

volume->getProperty, xrange=xr, yrange=yr, zrange=zr

xc = mg_linear_ function(xr, [-0.5, 0.5])

yc = mg_linear function(yr, [-0.5, 0.5])

zc = mg linear function(zr, [-0.5, 0.5])

volume->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC

palette = obj new('IDLgrPalette')

viewgroup->add, palette

palette->1oad(CT, 5

palette->getProperty, red values=r, green values=g, blue values=b

volume->setProperty, rgb table@=[[r], [g]l, [bl]
model->rotate, [1, 0, 0], -90
model->rotate, [0, 1, 0], -15
model->rotate, [1, 0, 0], 25

xaxis = obj new('IDLgrAxis', direction=0, range=xr, color=[255, 255, 255])
model->add, xaxis

yaxis = obj new('IDLgrAxis', direction=1, range=yr, color=[255, 255, 255])
model->add, yaxis

zaxis =

Object graphics — Sample visualizations

obj new('IDLgrAxis', direction=2, range=zr, color=[255, 255, 255])

model->add, zaxis

model->add, volume

xaxis->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC
yaxis->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC
zaxis->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zc

window = obj new('IDLgrWindow', dimensions=[500, 500], graphics tree=viewgroup, extra=e)
window->draw

end

Note that the volume was added to the model after the axes because generally items should be added starting from
the back of the scene and proceeding to the front in case transparency is used (see Section 9.8, “Texture mapping and

transparency” [p. 274] for details).

The IDLgrVolume class has several data, color table, and opacity properties that interact in different ways depending on
the value of the VOLUME_SELECT property. The following table summarizes the different methods for computing the

color and alpha channel values.

Table 9.8. Values of the VOLUME_SELECT property

Value Description

0 The values of DATAO are looked up in the color table in RGB_TABLEO to get the colors and in OPACITY_TABLEO to get

the

red[i, j, k]

g

alpha channel values.

= RGB_TABLEO[DATA®[i, j, kI, 0]
reen[i, j, k] = RGB_TABLEO[DATA®[i, j, k], 1]

blue[i, j, k] = RGB TABLEO[DATAO[i, j, k], 2]
alphali, j, k] = OPACITY TABLEO[DATA®[i, j, kIl

1 Two color tables and two opacity tables are used to look up the colors and alpha channel values of two different data sets:
red[i, j, k] = (RGB_TABLEO[DATAO[i, j, k], 0] * RGB_TABLE1[DATA1l[i, j, k], ©]) / 255
green[i, j, k] = (RGB_TABLEO[DATAO[i, j, kI, 1] * RGB_TABLE1[DATAl[i, j, k], 1]) / 255
blue[i, j, k]l = (RGB_TABLEO[DATAO[i, j, k], 2] * RGB_TABLE1[DATAl[i, j, k], 2]) / 255
alpha[i, j, k] = (OPACITY TABLEO[DATA®[i, j, k]] * OPACITY TABLE1[DATA1l[i, j, kll) / 255

2 Four different data sets are used to provide the values to look up in the RGB_TABLEO and OPACITY_TABLEO properties to
give the colors and alpha channel values:

red[i, j, kil
green[i, j,

= RGB_TABLEO[DATAO[i, j, k], 0]
1 = RGB_TABLEO[DATA1[i, j, kI, 1]

k
blue[i, j, k] = RGB_TABLEO[DATA2[i, j, k], 2]
k

alphali, j,

] = OPACITY_TABLEO[DATA3[i, j, k]l

Since a polygonal mesh was already visualized in Section 9.4, “A 3-dimensional example” [p. 249], a slight twist is
given in this example: create a given number of isosurfaces of a volume and display those in a single visualization. For
example data, use the thunderstorm data in the demo data of the IDL distribution:

IDL> restore, filename=filepath('storm25.sav', subdir=['examples', 'demo', 'demodata']), /verbose
% RESTORE: Portable (XDR) compressed SAVE/RESTORE file.

% RESTORE: Save file written by paulcs@COOTER, Wed Jun 28 17:03:46 2000.

% RESTORE: IDL version <Development build of Sun Jun 11 23:31:39 MDT 2000> (Win32, x86).

% RESTORE: Restored variable: P.

% RESTORE: Restored variable: T.

% RESTORE: Restored variable: U.

% RESTORE: Restored variable: V.

267

Object graphics — Sample visualizations

% RESTORE: Restored variable: W.
Let’s display 9 isosurfaces of the p variable:
IDL> mg ogisosurface example, p, 9, /shading

The output should look like

000 %/ IDL Object Window 32

A

Isosurfaces of the pressure data from storm25. sav save file is shown using the MG_OGISOSURFACE_EXAMPLE
procedure. The “Std Gamma-I1" color table is used to show the values of the isosurfaces.

The implementation is shown below:

pro mg_ogisosurface example, volume, n, renderer=renderer, extra=e
compile opt strictarr

; first and last values won't get drawn so add two to make up for it
n=n+2

dims = size(volume, /dimensions)

xr = [0, dims[0]]

yr = [0, dims[1]]

zr = [0, dims[2]]

xc = mg_linear function(xr, [-0.6, 0.6])
yc = mg_linear_ function(yr, [-0.6, 0.6])
zc = mg linear function(zr, [-0.6, 0.6])

viewgroup = obj new('IDLgrViewGroup')

view = obj new('IDLgrView')
viewgroup->add, view

model = obj new('IDLgrModel')

268

Object graphics — Sample visualizations

view->add, model

palett

e

= obj new('IDLgrPalette')

viewgroup->add, palette
palette->10adCT, 5

maxV =
values
colors

for i

m

ax(volume, min=minV)
(maxV - minV) * findgen(n) / (_.n - 1L) + minV
bytscl(values)

OL, n - 1L do begin

isosurface, volume, values[i], vertices, polygons
if (polygons[0] 1t OL) then continue

polygon = obj new('IDLgrPolygon', vertices, polygons=polygons, $

palette=palette, color=colors[i], $
_extra=e)

model->add, polygon

polygon->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC

endfor

lightModel = obj new('IDLgrModel"')
view->add, lightModel

light

obj new('IDLgrLight', type=2, location=[-1, 1, 1])

lightModel->add, light

model->rotate, [0, 1, O], -30
model->rotate, [1, 0, 0], 30

Xaxis

obj new('IDLgrAxis', direction=0, range=xr, /exact, $
location=[xr[0], yr[0], zr[0]], ticklen=0.015)

model->add, xaxis

yaxis

obj new('IDLgrAxis', direction=1, range=yr, /exact, $
location=[xr[0], yr[0], zr[0]], ticklen=0.015)

model->add, yaxis

zaxis

obj new('IDLgrAxis', direction=2, range=zr, /exact, $
location=[xr[0], yr[0], zr[0]], ticklen=0.015)

model->add, zaxis

xaxis->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC
yaxis->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC
zaxis->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC

window

obj new('IDLgrWindow', dimensions=[500, 500], $
graphics tree=viewgroup, renderer=renderer)

window->draw

end

The MESH_ routines in Table 6.15, “Routines to handle meshes” [p. 171] can be useful for dealing with polygonal

meshes.

Map outlines can be represented by IDLgrPolyline objects and computed using the mapping projection routines. The

MG_OGMAP_EXAMPLE procedure uses state outlines from a shapefile to display a map of the United States using any

of the available map projections:

IDL> mg ogmap example, 'stereographic', color=[200, 100, 100]

269

Object graphics — Sample visualizations

This produces the following:

OJ

<
=

s

4

Stereographic projection of the US state outlines using the object graphics program MG_OGMAP_EXAMPLE.

The object graphics hierarchy for the example contains a view, model, and an IDLgrPolyline for each state and the
District of Columbia:

view

model

7 T

polyline 1 polyline 2 ven polyline 51

The parameter to MG_OGMAP_EXAMPLE is a string listing the projection to use (the same as MAP_PROJ_INIT’s
argument). Keywords from IDLgrPolyline: :init are accepted:

pro mg_ogmap_example, projection, renderer=renderer, extra=e
compile opt strictarr

_projection = n_elements(projection) eq OL ? 'cylindrical' : projection
map = map_proj init(_projection)

statesFilename = filepath('states.shp', subdir=['examples', 'data'l)
states = obj new('IDLffShape', statesFilename)

270

Object graphics — Sample visualizations

view = obj new('IDLgrView')
model = obj new('IDLgrModel')
view->add, model

states->getProperty, n entities=nEntities
for s = OL, nEntities - 1L do begin
state = states->getEntity(s)

conn = [0]
for p = 0, state.n parts - 1L do begin
startInd = (*state.parts)[pl
endInd = p eq state.n parts - 1 $
? state.n vertices $
(*state.parts)[p + 1]

conn = [conn, endInd - startInd, lindgen(endInd - startInd) + startInd]
endfor

Xy = map_proj forward(*state.vertices, map structure=map)
xyMax = max(xy, dimension=2, min=xyMin)
if (n_elements(viewMax) gt 0) then begin
viewMax >= xyMax
viewMin <= xyMin
endif else begin
viewMax = xyMax
viewMin = xyMin
endelse

statePoly = obj new('IDLgrPolyline', xy, polylines=conn[1l:*], $
_extra=e)
model->add, statePoly

states->destroyEntity, state
endfor

obj destroy, states

sz = viewMax - viewMin
view->setProperty, viewplane rect=[viewMin, sz]

window = obj new('IDLgrWindow', graphics tree=view, title= projection, $
dimensions=500 * [1, sz[1] / sz[0]], renderer=renderer)
window->draw

end

The final example in this section shows several views of a surface in a single scene. Using several views in one scene

allows a different coordinate system for each view, making each one independent of the others. This is useful when

combining different visualizations into a single display. The example program takes a 2-dimensional array and displays

it as a surface with several different orientations. To see the output from the example, do

IDL> restore, filename=filepath('marbells.dat', subdir=['examples', ‘'data']), /verbose

o o° o°

o°

RESTORE: Portable (XDR) SAVE/RESTORE file.

RESTORE: Save file written by ddirks@ENGDDIRKS, Fri Oct 05 12:52:26 2007.
RESTORE: IDL version 7.0 <Dev build Thu Oct 4 23:07:16 MDT 2007> (Win32, x86).
RESTORE: Restored variable: ELEV.

IDL> mg ogscene _example, elev, findgen(350) * 10, findgen(450) * 10, /isotropic

This should display the following scene:

271

Object graphics — Sample visualizations

X Example of using a scene to show multiple views

Display of example data file marbells. dat using MG_OGSCENE_EXAMPLE.

A 2-dimensional array z, as well as optional 1-dimensional arrays x and y to specify the axes values, are passed as
parameters to the example routine. A helper routine is called four times to create the the four separate views of the
surface. Each time the model inside the returned view is rotated to a different perspective.

pro mg_ogscene example, z, X, y, isotropic=isotropic
compile opt strictarr

~z = n_elements(z) eq OL ? hanning(20, 20) : z
dimensions = [0.5, 0.5]

scene = obj new('IDLgrScene')

viewl = mg ogscene example createview(z, datax=x, datay=y, $
model=modell, isotropic=isotropic, $
location=[0.0, 0.5]1, $
dimensions=dimensions)

scene->add, viewl

view2 = mg ogscene example createview(z, datax=x, datay=y, $
model=model2, isotropic=isotropic, $
location=[0.5, 0.5]1, $
dimensions=dimensions)

scene->add, view2

model2->rotate, [1, O, 0], -90

view3 = mg ogscene example createview(z, datax=x, datay=y, $
model=model3, isotropic=isotropic, $
location=[0.0, 0.0]1, $
dimensions=dimensions)

272

Object graphics — Sample visualizations

scene->add, view3
model3->rotate, [1, 0, 0], -90
model3->rotate, [0, 1, O], 90

view4d = mg ogscene example createview(z, datax=x, datay=y, $
model=model4, isotropic=isotropic, $
location=[0.5, 0.0], $
dimensions=dimensions)

scene->add, view4

model4->rotate, [1, 0, O], -90

model4->rotate, [0, 1, O], -30

model4->rotate, [1, 0, O], 45

win = obj new('IDLgrWindow', dimensions=[500, 500], graphics tree=scene, $
title="'Example of using a scene to show multiple views')
win->draw
end

The helper routine MG_SCENE_EXAMPLE_CREATEVIEW returns a view with a complete hierarchy of a model
containing the surface as well as a model containing directional and ambient lights. The model is also returned via a

keyword so that it can be rotated in the main routine. The LOCATION and DIMENSIONS keywords describe the view’s
location and size within the scene.

function mg scene example createview, z, datax=datax, datay=datay, model=model, $
location=location, dimensions=dimensions, $
isotropic=isotropic
compile opt strictarr

view = obj new('IDLgrView', location=location, dimensions=dimensions, units=3)

model = obj new('IDLgrModel')
view->add, model

surf = obj new('IDLgrSurface', z, datax=datax, datay=datay, style=2, $
color=[140, 14, 15], bottom=[60, 6, 6])
model->add, surf

lightmodel = obj new('IDLgrModel"')
view->add, lightmodel

dirLight = obj new('IDLgrLight', type=2, location=[-1, 1, 1])
lightmodel->add, dirLight

ambLight = obj new('IDLgrLight', type=0, intensity=0.4)
lightmodel->add, ambLight

m = 0.95

surf->getProperty, Xxrange=xr, yrange=yr, zrange=zr

maxRange = (xr[1] - xr[0]) > (yr[1] - yr[0]) > (zr[1] - zr[0O])
print, xr, yr, zr

if (keyword set(isotropic)) then begin
xc = mg_linear_ function([-0.5, 0.5] * maxRange + (xr[0] + xr[1]) / 2.0, [-m, m])
yc = mg_linear function([-0.5, 0.5] * maxRange + (yr[0] + yr[1]) / 2.0, [-m, m])
zc = mg_linear function([-0.5, 0.5] * maxRange + (zr[O@] + zr[1]) / 2.0, [-m, m])

endif else begin

xc = mg_linear_ function(xr, [-m, m])
yc = mg linear function(yr, [-m, m])
zc = mg_linear function(zr, [-m, m])

273

Object graphics — Texture mapping and transparency

endelse
surf->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC

return, view
end
The ISOTROPIC keyword specifies whether the data should be scaled to fit into each dimension or whether a single
scaling should be used for all dimensions.

9.8. Texture mapping and transparency

Surface and polygon graphics atoms can have images morphed onto them using a technique called texture mapping.
Optionally, texture map images can contain an extra channel, called the alpha channel, which specifies the level of
transparency for each pixel of the image. If this level is the same for all pixels, the ALPHA_CHANNEL property can
instead be used to set the level with a single value.

Placing a texture map on a surface object is relatively easy. An IDLgrlmage object is created as the texture map and
passed as the value of the TEXTURE_MAP property of the IDLgrSurface object. Additionally, the TEXTURE_INTERP
property can be set to specify nearest neighbor interpolation (0, the default) or bilinear interpolation (1) of the texture
map to the surface.

Using data in the example data of the IDL distribution, the following example MG_SURFACETEXTURE_DEMO uses the
world elevation data to create a surface and the continent mask to color code the surface as land or water:
IDL> mg surfacetexture demo

The result is displayed below.

000 %/ IDL Object Window 32

The continent mask.dat data set is used as a texture map over the
worldelev.dat DEM in the MG_SURFACETEXTURE_DEMO example program.

Let's go through the lines of MG_SURFACETEXTURE_DEMO. First, the DEM and mask are read from binary data files:

274

Object graphics — Texture mapping and transparency

pro mg_surfacetexture_demo, renderer=renderer
compile opt strictarr

demFilename = file which('worldelv.dat'])
dem = read binary(demFilename, data type=1, data dims=[360, 360])

maskFilename = file_which('continent_mask.dat')
mask = read binary(maskFilename, data type=1, data dims=[360, 360])

The object graphics hierarchy begins with a viewgroup, view, and model; the viewgroup is useful because the texture
map image object will not be part of the object graphics hierarchy, so adding the texture map image to the viewgroup
will clean it up automatically.

viewgroup = obj new('IDLgrViewGroup')

view = obj new('IDLgrView')
viewgroup->add, view

model = obj new('IDLgrModel')
view->add, model

The texture map image is a normal IDLgrImage. It is landColor over the land and waterColor over the water:
landColor = [150, 100, 20]
waterColor = [200, 200, 255]
textureImage = bytarr(3, 360, 360)

textureImage[0, *, *]
textureImage[1l, *, *]
textureImage[2, *, *]

mask * landColor[0] + (1 - mask) * waterColor[0]
mask * landColor[1l] + (1 - mask) * waterColor[1]
mask * landColor[2] + (1 - mask) * waterColor[2]

texture = obj new('IDLgrImage', textureImage)
viewgroup->add, texture

Next, the surface graphics atom is created and added to the hierarchy. All the keywords used in this example are
significant for working with texture maps. It is important to note that the color of the surface will be blended with the

texture map, so in most cases the color should be set to white. Also, while texture maps can be mapped onto wire meshes

and other style surfaces, smooth surfaces (style=2) are usually what is desired. Finally, the texture map is set via the
TEXTURE_MAP keyword and bilinear interpolation is used:

surface = obj new('IDLgrSurface', dem, style=2, $
color=[255, 255, 2551, $%
texture map=texture, texture interp=1)
model->add, surface

A directional light is added to its own model in the graphics hierarchy:
lightmodel = obj new('IDLgrModel"')
view->add, lightmodel
light = obj new('IDLgrLight', type=2, location=[-1, 1, 1])
lightmodel->add, light
The surface is scaled to fit in the view volume using the MG_LINEAR_FUNCTION function introduced previously:

surface->getProperty, xrange=xr, yrange=yr, zrange=zr
xc = mg_linear_ function(xr, [-1.2, 1.2])
yc = mg_linear function(yr, [-1.2, 1.2])
zZC mg linear function(zr, [-0.1, 0.1])

275

Object graphics — Texture mapping and transparency

surface->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zcC
The model is rotated to enhance the 3-dimensional aspect of the surface:

model->rotate, [1, 0, 0], -90
model->rotate, [0, 1, O], 30
model->rotate, [1, 0, O], 50
Finally, a window is created to display the scene. The viewgroup is set as the GRAPHICS_TREE of the window so that
the graphics hierarchy will be destroyed when the window is deleted.
win = obj new('IDLgrWindow', dimensions=[400, 400], graphics tree=viewgroup, renderer=renderer)
win->draw
end
It is easier to texture map an image onto a surface than a polygon; a later example will map an image onto a non-
rectangular polygon.

Graphics atoms can be made transparent in two different methods: using a texture map with an alpha channel (for
surface and polygon atoms) or using the ALPHA_CHANNEL keyword (for nearly all atoms). In the above example, the
texturelmage could be specified as a four channel image with the fourth channel (the alpha channel) set to @ for ocean
and 255 for land:

textureImage([3, *, *] = mask * 255

This would produce a surface where only the land was visible. Alternatively, if the entire surface was to be made equally
transparent, then adding alpha_channel=0.2 to the IDLgrSurface creation would be sufficient.

One issue to keep in mind when using transparency is that graphics items are rendered in the order they are added to the
object graphics tree. So a transparent item should be added after the items behind it. For an example of this problem, run
the MG_RENDER_ORDER example:

IDL> mg render order
Both squares in this example are 50% transparent. The blue square is added first, so it appears through the red square

when the red square is in the front. But rotating the squares to place the blue square in front causes the problem: the red
square is not visible through the blue square. To show a solution to this problem, try

IDL> mg render order, /swap

With the SWAP keyword set, the order of the squares is changed by MG_RENDER_ORDER as they are rotated. See the
code in mg_render_order.pro for more details of this example.

When using a texture map with an IDLgrPolygon, the same type of IDLgrImage texture map must be created as for
IDLgrSurface objects. In addition, the TEXTURE_COORD properties should be set to texture coordinates that define the
mapping from the image to the polygon. The texture coordinates are a 2 by nverts array, where nverts is the number

of vertices in the polygon. For each vertex of the polygon, a location in the image is specified using normalized
coordinates, i.e., the lower left hand corner of the image is (0.0, 0.0) and the upper right hand corneris (1.0, 1.0).
Coordinates outside the range of 0—1 indicate repeated tilings. For example, the following texture coordinates would map
a full image onto a rectangle:

texture coord=[[0., 0.1, [1., 0.], [1., 1.], [0., 1.1]
The following texture coordinates would map four copies of the image in a 2 by 2 grid onto the rectangle:
texture coord=[[0., 0.], [2., 0.1, [2., 2.], [0., 2.]]

It’s as if the entire plane is tiled with the original image in the range 0—1 for both directions and the TEXTURE_COORD
determines how much will be revealed.

276

Object graphics — Texture mapping and transparency

The MG_TEXTUREMAP_DEMO procedure is an example of texture mapping an image onto a non-rectangular polygon,
a pentagon.
IDL> mg texturemap demo

The result is shown below:

000 x| IDL Object Window 32

)

The example program MG_TEXTUREMAP_DEMO maps people. jpg in the example data of the IDL distribution onto a pentagon.

A viewgroup is again used as the root of the graphics tree so that the image object used as a texture map can be added to
it to ensure it is cleaned up properly since it is not in the object graphics hierarchy. The beginning of the routine simply
sets up the graphics hierarchy:

pro mg_texturemap demo, renderer=renderer

compile opt strictarr

; viewgroup needed to properly cleanup texture map image
viewgroup = obj new('IDLgrViewGroup')

view = obj new('IDLgrView', color=[0, 0, 0])
viewgroup->add, view

model = obj new('IDLgrModel')

view->add, model
Next, create the texture map image as a normal image object, but add it to the viewgroup because it won’t be part of the
normal graphics tree:

f = filepath('people.jpg', subdir=['examples', 'data'l])
ali = read image(f)

texture = obj new('IDLgrImage', ali)

viewgroup->add, texture

To define the pentagon, it is easiest to specify the location of the vertices in polar coordinates and convert them to

rectangular coordinates:

r = fltarr(5) + 0.9
theta = (findgen(5) * 360 / 5 + 90.0) * !dtor

277

Object graphics — Inheriting from an IDLgr class: MGgrCube

xy = cv_coord(from polar=transpose([[theta], [r]]), /to_rect)

The texture coordinates will map four of the vertices of the pentagon to the four corners of the image. The fifth vertex,
the one at the top, will be mapped to a point at the upper middle, (0.5, 1.0) in normal coordinates, of the image:

tcoords = [[0.5, 1.0], [0.0, 1.0], [0.0, 0.0], [1.0, 0.0], [1.0, 1.0]]
The texture map image and texture coordinates are passed to the creation of the IDLgrPolygon object:

polygon = obj new('IDLgrPolygon', xy, polygons=[5, 0, 1, 2, 3, 4], $
color=[255, 255, 255], $
texture map=texture, texture interp=1, $
texture coord=tcoords)

model->add, polygon

It is important to make sure the color of the polygon is set to white to prevent blending of the texture map with the
underlying color of the polygon. Finally, create a graphics window and have it draw the graphics hierarchy:

win = obj new('IDLgrWindow', dimensions=[400, 400], graphics tree=viewgroup, renderer=renderer)
win->draw
end

9.9. Inheriting from an IDLgr class: MGgrCube

The classes in the IDL object graphics library can be extended through inheritance like any other class. In this section, a
MGgrCube class will be created that inherits from IDLgrPolygon. This cube could be used as a 3-dimensional plotting
symbol or an indicator of spatial extent of a 3-dimensional object. To run the demo program, type the following:

IDL> .run mggrcube define

This example should display 100 cubes with random locations, sizes, colors, and styles as below:

278

Object graphics — Inheriting from an IDLgr class: MGgrCube

The MGGRCUBE__DEFINE procedure specifies that the MGgrCube class inherits from IDLgrPolygon and is described
by CENTER and SIDE properties:

pro mggrcube define
compile opt strictarr

define = { MGgrCube, inherits IDLgrPolygon, $
center: fltarr(3), $
side: 0.0 $
}

end
Properties from IDLgrPolygon will also be made available.

The init method calls the cube’s parent’s init method, IDLgrPolygon::init. It then saves away its own property values,
using defaults if none are provided. Finally, it computes the actual vertices and polygons using the recompute method:

function mggrcube::init, center=center, side=side, extra=e
compile opt strictarr

if (~self->IDLgrPolygon::init(extra=e)) then return, 0B
; save center and side, use defaults if necessary
self.center = n_elements(center) eq 0 ? fltarr(3) : center

self.side = n_elements(side) eq 0 ? 1.0 : side

; compute vertices and connectivity
self->recompute

279

Object graphics — Inheriting from an IDLgr class: MGgrCube

return, 1B
end
The _EXTRA keyword allows properties of IDLgrPolygon to be set on the cube. Keyword inheritance will be used to
allow access to all of IDLgrPolygon’s properties in the cube’s init, setProperty, and getProperty methods.

The cleanup method is not strictly required here since it just calls its parent’s cleanup method (which would happen
automatically without a MGgrCube::cleanup method):

pro mggrcube::cleanup
compile opt strictarr

self->IDLgrPolygon::cleanup
end

It is useful to put in the cleanup as a placeholder for future additions, but also to prevent IDL from searching for it.

The setProperty method sets the CENTER or SIDE properties and recomputes the vertices. Other properties of
IDLgrPolygon are simply passed on to IDLgrPolygon::setProperty to be handled there.

pro mggrcube::setProperty, center=center, side=side, extra=e
compile opt strictarr

if (n_elements(center) gt 0) then begin
self.center = center
self->recompute

endif

if (n_elements(side) gt 0) then begin
self.side = side
self->recompute

endif

if (n_elements(e) gt 0) then begin
self->IDLgrPolygon::setProperty, strict extra=e
endif
end

The _STRICT_EXTRA used in the call to IDLgrPolygon::setProperty ensures that invalid property names will cause an

C€ITor.

The getProperty method reports the values of the cube’s properties, querying the parent IDLgrPolygon properties if
necessary:

pro mggrcube::getProperty, center=center, side=side, ref extra=e
compile opt strictarr

if (arg present(center)) then begin
center = self.center
endif

if (arg present(side)) then begin
side = self.side
endif

if (n_elements(e) gt 0) then begin

self->IDLgrPolygon::getProperty, strict extra=e
endif

280

Object graphics — Inheriting from an IDLgr class: MGgrCube

end

Remember to use _REF_EXTRA in the routine header for output keywords such as in a getProperty method.

Finally, the cube vertices are specified in the recompute helper method:

pro mggrcube: :recompute
compile opt strictarr

create a list of -1's and 1's to represent vertices
= reform(rebin([-1, 11, 2, 4, /sample), 8)
reform(rebin([-1, 11, 4, 2, /sample), 8)
reform(rebin([-1, 1], 8, /sample), 8)

N < X ~-
I

scale them to center and side

= x * self.side / 2.0 + self.center[0]
y * self.side / 2.0 + self.center[1]
z * self.side / 2.0 + self.center[2]

N < X ~-
I

; make the 3 by 8 array
verts = transpose([[x], [y]l, [z]])

; make each face

front = [4, 6, 7, 5, 4]
back = [4, 3, 2, 0, 1]
right = [4, 7, 3, 1, 5]
left = [4, 2, 6, 4, 0]
top = [4, 2, 3, 7, 6]
bottom = [4, 4, 5, 1, 0]

; create the connectivity list
polygons = [front, back, right, left, top, bottom]

; put the data into the polygon
self->setProperty, data=verts, polygons=polygons
end

In a more efficient implementation, some of the temporary results above could be computed in the init method and
reused as necessary.

An MGgrCube object can be placed into a standard graphics hierarchy, but it is simpler to use XOBJVIEW to view the
cube for demonstration. Create a unit cube and display it:

IDL> cube = obj new('MGgrCube', center=[0, 0], side=1.0)
IDL> xobjview, cube

The default black color of the cube makes it difficult to see its edges. While XOBJVIEW is still running, change the color
with the setProperty method:

IDL> cube->setProperty, color=[255, 200, 0]

Refresh the display in XOBJVIEW by rotating the cube a bit or selecting View > Refresh Display from the menus.
Destroy the cube when finished:

IDL> obj destroy, cube

XOBJVIEW can be closed before or after the cube is freed.

281

Object graphics — Composite graphics classes

9.10. Composite graphics classes

Composite graphics classes combine several atoms into a single entity. This new class can be treated as a normal
graphics atom with a more specialized purpose. This is analogous to a compound widget, but the object-oriented nature
of the object graphics system allows for transparent integration of the new class (compound widgets, for example, can be
awkward to control after creation because WIDGET_CONTROL does not know about them).

The advantage of combining the atoms into a separate class is that higher-level properties can be set on the class without
worrying about the details of how they are implemented by the properties of the individual atoms that comprise the
composite graphics class. For example, the properties of items in a IDLgrLegend can be set without knowledge of the
properties of the underlying polyline or text objects.

Two composite graphics classes are provided in the IDL library IDLgrLegend and IDLgrColorbar. The IDL source code
for both of them is in the IDL library and can be examined.

The example presented in this section will be a lighting system composed of several lights: an ambient light and two
directional lights from different locations. To see output from using MGgrLightModel, run the main-level example
program included with the code:

IDL> .run mggrlightmodel define

This creates a simple object graphics hierarchy containing a surface and uses an MGgrLightModel to light it.

The composite graphics class itself inherits from IDLgrModel and adds its components as children of itself:

pro mggrlightmodel define
compile opt strictarr

define = { MGgrLightModel, inherits IDLgrModel }
end

Currently, there are no properties to the MGgrLightModel, so there are empty getProperty and setProperty methods. A
more robust implementation would allow the properties of the three lights to be controlled independently.

The cleanup responsibilities are passed pass along to the model (it will destroy its children, the lights). This method is
not strictly needed until other cleanup tasks are required, but creating it now means it can be added to quickly.

pro mggrlightmodel: :cleanup
compile opt strictarr

self->idlgrmodel: :cleanup
end

The init method creates the three lights and adds them to the object:

function mggrlightmodel::init, extra=e
compile opt strictarr

if (~self->IDLgrModel::init(_strict_extra=e)) then return, 0B

ambient = obj new('IDLgrLight', type=0, name='ambient', intensity=0.2)
self->add, ambient

directionall = obj new('IDLgrLight', type=2, location=[-1.0, 1.0, 1.0], $

282

Object graphics — Sending output to other destinations

name='directionall', intensity=0.5)
self->add, directionall

directional2 = obj new('IDLgrLight', type=2, location=[0.0, 0.0, 1.0], $
name='directional2', intensity=0.3)
self->add, directional2

return, 1B
end
The directional? light shines directly from the viewer to the origin, while the directionall provides some 3-dimensional
perspective to the scene by being offset.

9.11. Sending output to other destinations

A object graphics scene can be sent to a graphics window, the system clipboard, a printer, a memory buffer, or a
VRML file via the destinations listed in Table 9.5, “Object graphics destination classes” [p. 247]. Object graphics is
device-independent, meaning that the object graphics hierarchy does not need to be changed depending on the output
destination.

Two common formats to capture graphics output are raster image formats (like PNG, JPEG, etc.) or vector graphics
formats (like Encapsulated PostScript). Vector graphics uses geometric objects like points and lines to describe graphics.
This allows for smooth looking output even when zoomed into or shown in high-resolution.

Use the IDLgrClipboard as the destination class to get Encapsulated PostScript (EPS) output. The draw method for
IDLgrClipboard has keywords that must be configured to produce EPS output. Set the VECTOR keyword, set the
POSTSCRIPT keyword, and specify an output filename with the FILENAME keyword. For example, the following code
snippet would send the object graphics hierarchy rooted at scene to the EPS file scene. eps:

clipboard = obj_new('IDLgrClipboard")

clipboard->draw, scene, /vector, /postscript, filename='scene.eps'

obj destroy, clipboard
There are some keywords to further configure vector output; see the VECT_SHADING, VECT_SORTING, and
VECT_TEXT_RENDER_METHOD keywords to IDLgrClipboard: :draw in the online help.

The IDLgrPDF destination, added in IDL 8.0, is similar to the clipboard destination, but allows multiple pages of output
to be created. A typical rendering to PDF would be like:

pdf = obj new('IDLgrPDF")

pdf->addPage

pdf->draw, scenel

pdf->addPage, /landscape

pdf->draw, scene2

pdf->save, 'scenes.pdf'

obj destroy, pdf
The size and orientation for each page can be set with the addPage, with the default being an 8.5 by 11 inch page in
portrait orientation. Beyond the normal graphics destination properties, there are also several properties to control meta-
data contained with the PDF file.

Creating a raster image of a scene can be done with either the /DLgrWindow or IDLgrBuffer destinations; using a
window will display the graphics on the screen as well. There are two ways to get the output of a graphics scene as
an image depending on what is to be done with the image: the IMAGE_DATA property or the read method. Use the

283

Object graphics — Creating a new destination: MGgrWindow3D

IMAGE_DATA property of either IDLgrWindow or IDLgrBuffer to get a standard IDL array that can be used as output to
WRITE_IMAGE or its equivalents. For example, the following code snippet creates a 400 by 400 pixel PNG image file of
the graphics hierarchy rooted at scene:

win = obj new('IDLgrWindow', dimensions=[400, 400])

win->draw, scene

win->getProperty, image data=im

write png, 'output.png', im

obj destroy, win

The read method of IDLgrWindow or IDLgrBuffer retrieves the current display as an IDLgrImage:
image = win->read()

In this case, image could then be queried for its properties, its data retrieved, or used in another graphics hierarchy.

9.12. Creating a new destination: MGgrWindow3D

It is possible to create new destination classes that render graphics hierarchies in new ways or to new formats. For
example, new destination classes could write Scalable Vector Graphics (SVG), POV-Ray input files, or any of the
various image file formats.

The example in this section, MGgrWindow3d, will display output in a standard graphics window, but will render it as an
anaglyph, i.e., two superimposed images, one red and one cyan, that when viewed with red-cyan glasses produce a stereo
effect. To see a simple result, try

IDL> .run mggrwindow3d define

This will create a simple scene containing a surface and render it with MGgrWindow3d instead of IDLgrWindow. Red-
cyan glasses are required to perceive the 3-dimensional effect of the output image.

The MGgrWindow3d will use a helper class, MGgr3dConverter to do the computations necessary to make the anaglyph:
it rotates the top-level models in a scene, creates two images from these rotations, and combines the two images into

a single red-cyan anaglyph. These calculations could be done multiple ways to produce other types of output: there

are stereograms, autostereograms, or even output that requires special hardware for display. Therefore, this class
encapsulates one way of doing the calculation, but other classes could be written to do the calculations other ways.

The converter class contains a separate object graphics hierarchy to pass along to the MGgrWindow3d; the view and
image fields are part of this hierarchy. The buffer field is a destination that is used to render the results that are placed in
the image field. The eyeSeparation field is the angle of separation in degrees between the “eyes” of the renderer.

pro mggr3dconverter define
compile opt strictarr

define = { MGgr3dConverter, $
eyeSeparation: 0.0, $
buffer: obj new(), $
view: obj new(), $
image: obj new() $

end

The object graphics hierarchy passed along to the IDLgrWindow3d as well as the buffer used to create the two images
that are combined into the anaglyph are created in the init method.

function mggr3dconverter::init, eye separation=eyeSeparation, $

284

Object graphics — Creating a new destination: MGgrWindow3D

dimensions=dimensions, picture=picture, extra=e
compile opt strictarr

self.eyeSeparation = n_elements(eyeSeparation) eq 0 ? 4.0 : eyeSeparation
self.buffer = obj new('IDLgrBuffer', dimensions=dimensions, extra=e)
self.view = obj new('IDLgrView', viewplane rect=[0, 0, dimensions])

model = obj new('IDLgrModel')
self.view->add, model

self.image = obj new('IDLgrImage')
model->add, self.image

return, 1
end

The graphics hierarchy and the buffer need to be cleaned up when done:

pro mggr3dconverter: :cleanup
compile opt strictarr

obj destroy, [self.view, self.buffer]
end

There are two properties for the converter class: EYE_SEPARATION and DIMENSIONS. The DIMENSIONS property is
actually stored in the buffer:

pro mggr3dconverter::getProperty, eye separation=eyeSeparation, $
dimensions=dimensions
compile opt strictarr

if (arg _present(eyeSeparation)) then begin
eyeSeparation = self.eyeSeparation
endif

if (arg_present(dimensions)) then begin
self.buffer->getProperty, dimensions=dimensions
endif
end

The DIMENSIONS is passed along to the buffer as well as used to set the view’s VIEWPLANE_RECT property:

pro mggr3dconverter::setProperty, eye separation=eyeSeparation, $
dimensions=dimensions
compile opt strictarr

if (n_elements(eye separation) gt 0) then begin
self.eyeSeparation = eyeSeparation
endif

if (n_elements(dimensions) gt 0) then begin
self.view->setProperty, viewplace rect=[0, 0, dimensions]
self.buffer->setProperty, dimensions=dimensions
endif
end

The _combinelmages method combines left and right images into a single image where the left image is used for the red
channel and the right image is used for the green and blue channels:

285

Object graphics — Creating a new destination: MGgrWindow3D

function mggr3dconverter:: combineImages, leftImage, rightImage
compile opt strictarr

; define combined image to the correct size
combinedImage = leftImage * 0B
dims = size(leftImage, /dimensions)

_leftImage = byte(total(fix(leftImage), 1) / 3)
_rightRight = byte(total(fix(rightImage), 1) / 3)

Reform(leftImage, 1, dims[1l], dims[2])
Reform(_rightRight, 1, dims[1], dims[2])
Reform(_ rightRight, 1, dims[1], dims[2])

combinedImage[0, 0, 0]
combinedImage[1l, 0, 0]
combinedImage([2, 0, 0]

return, combinedImage
end

Note that we prefix the method name with an underscore to indicate that it is a private method, not intended to be called
from outside of the other methods of the class. The _rotateModels method is a helper method that rotates top-level

models the given number of degrees:

pro mggr3dconverter:: rotateModels, picture, degrees
compile opt strictarr

; 1f picture is a model then rotate it, but don't rotate models inside it
if (obj isa(picture, 'IDLgrModel')) then begin

picture->rotate, [0, 1, O], degrees

return
endif

if (obj isa(picture, 'IDL Container')) then begin
items = picture->get(/all, count=count)
for i = 0L, count - 1 do begin
self-> rotateModels, items[i], degrees
endfor
endif
end

The convert method is the only method besides the lifecycle and property methods that should be called from outside the
class. It converts an arbitrary graphics hierarchy containing 3-dimensional objects to another object graphics hierarchy
containing an anaglyph image:

function mggr3dconverter::convert, picture
compile opt strictarr

; rotate "top-level" models for left eye
self-> rotateModels, picture, self.eyeSeparation / 2.

; draw picture to left eye buffer
self.buffer->draw, picture

; get data out of left eye buffer
oleftImage = self.buffer->read()
oleftImage->getProperty, data=leftImage
obj destroy, oleftImage

; rotate "top-level" models for right eye
self-> rotateModels, picture, - self.eyeSeparation

286

Object graphics — Creating a new destination: MGgrWindow3D

; draw picture to right eye buffer
self.buffer->draw, picture

; get data out of left eye buffer
orightImage = self.buffer->read()
orightImage->getProperty, data=rightImage
obj destroy, orightImage

; rotate "top-level" models back to center
self-> rotateModels, picture, self.eyeSeparation / 2.

combinedImage = self-> combineImages(leftImage, rightImage)
self.image->setProperty, data=combinedImage
return, self.view

end

The outline of the convert method is simple: rotate to the right, take a snapshot, rotate back to the left, take a snapshot,
combine the two snapshots into an anaglyph, reset the rotation, and return the anaglyph.

The actual destination MGgrWindow3d is a subclass of IDLgrWindow. It contains an MGgr3dConverter object to
construct the anaglyph:

pro mggrwindow3d__define
compile opt strictarr

define = { MGgrWindow3d, inherits IDLgrWindow, $
converter: obj new() $

}

end

The DIMENSIONS property takes on a platform-dependent preference value for the default size of a graphics window if
not set explicitly. A converter object is created at the same time as the window:

function mggrwindow3d::init, eye separation=eyeSeparation, $
dimensions=dimensions, extra=e
compile opt strictarr

if (~self->IDLgrWindow::init(dimensions=dimensions, extra=e)) then return, 0

if (n_elements(dimensions) eq 0) then begin
case strlowcase(!version.os_family) of

'unix' : begin
dims = [pref get('idl gr x width'), pref get('idl gr x height')]
end
'windows' : begin
dims = [pref get('idl gr win width'), pref get('idl gr win height')]
end
endcase

endif else dims = dimensions
self.converter = obj new('MGgr3dConverter', $
eye separation=eyeSeparation, $

dimensions=dims, extra=e)

return, 1

287

Object graphics — Creating a new destination: MGgrWindow3D

end
The parent class IDLgrWindow must be cleaned up, along with the converter object:

pro mggrwindow3d: :cleanup
compile opt strictarr

self->idlgrwindow: :cleanup
obj destroy, self.converter
end

The draw method sends the object graphics hierarchy to the converter object to receive back a new hierarchy containing
the anaglyph image which is then drawn by the parent class’ draw method.
pro mggrwindow3d::draw, picture

compile opt strictarr
on _error, 2

self->getProperty, graphics tree=graphicsTree
_picture = obj valid(picture) ? picture : graphicsTree

view = self.converter->convert(picture)

self->idlgrwindow: :draw, view
end

The EYE_SEPARATION property is stored in the converter class, the rest of the properties are retrieved from the parent

class:

pro mggrwindow3d::getProperty, eye separation=eyeSeparation, ref extra=e
compile opt strictarr

if (arg present(eyeSeparation)) then begin
self.converter->getProperty, eye separation=eyeSeparation
endif

if (n_elements(e) gt 0) then begin
self->IDLgrWindow: :getProperty, strict extra=e
endif
end

The DIMENSIONS property is intercepted so that it can be sent to both the parent IDLgrWindow and to the converter:
pro mggrwindow3d::setProperty, dimensions=dimensions, $

eye separation=eyeSeparation, extra=e
compile opt strictarr

self->IDLgrWindow: :setProperty, extra=e

if (n_elements(dimensions) gt 0) then begin
self->IDLgrWindow: :setProperty, dimensions=dimensions
self.converter->setProperty, dimensions=dimensions
endif

if (n_elements(eye separation) gt 0) then begin
self.converter->setProperty, eye separation=eyeSeparation
endif
end

The converter handles the EYE_SEPARATION property.

288

Object graphics — Widgets and objects graphics: interaction

9.13. Widgets and objects graphics: interaction

Object graphics combines well with widget programs. The more lengthy setup required for object graphics is not a major
drawback in a widget program that already requires a fair amount of setup. Also, the persistent nature of the objects in
the object graphics scene creates many possibilities for useful interactivity.

MG_SURFVIEW is a minimal program to display an object graphics scene in a widget program. It does not provide much
functionality except to display a surface and allow it to be rotated interactively with the mouse. To rotate, hold the left
mouse button down while moving the mouse. More features are added through the exercises for this section.

X Surface view

The MG_SURFVIEW program displaying the default data set.

There are only three routines for this program: MG_SURFVIEW to create the object graphic and widget hierarchies,
MG_SURFVIEW_CLEANUP to clean up resources, and MG_SURFVIEW_EVENT to handle all the events generated

in the program. All the routines are in a single file mg_surfview.pro and are discussed in the order that they would
likely be written, not in the order that they should appear in the file. Let’s step through the sections of the main routine,
MG_SURFVIEW, starting with the routine header that indicates the routine accepts a single parameter, a 2-dimensional
data set to display as a surface. The HANNING function is used to create an example data set if none is specified. The
default graphics window size will be set to 400 by 400.

pro mg_surfview, z, renderer=renderer
compile opt strictarr

; default data for convenience during development
~z = n_elements(z) eq 0 ? hanning(20, 20) : z

xsize 400
ysize = 400

Next, the widget hierarchy is created and realized. The draw widget’s GRAPHICS_LEVEL keyword is set to 2 to indicate
that this draw widget will display object graphics instead of direct graphics (and this cannot be changed while the

289

Object graphics — Widgets and objects graphics: interaction

program is running). It is possible to use subclasses of IDLgrWindow or IDLitWindow in a widget program. Along with
setting GRAPHICS_LEVEL to 2, set the CLASSNAME keyword of the WIDGET_DRAW to the name of the class to use for
the draw widget. Motion and button events need to be turned on to let the user rotate the surface.
; create widget hierarchy
tlb = widget base(title='Surface view', /column, $
/tlb_size events, uname='tlb"')
draw = widget draw(tlb, xsize=xsize, ysize=ysize, $
graphics level=2, renderer=renderer, $; 2 => object graphics
/motion events, /button events, uname='draw')

widget control, tlb, /realize

In a widget program that uses direct graphics in a draw widget, the following line would return a widget identifier
in owindow. Because the GRAPHICS_LEVEL keyword is set to 2 in the creation of the WIDGET_DRAW above, an
IDLgrWindow object reference is returned instead:

widget control, draw, get value=owindow

Next, a fairly simple object graphics hierarchy containing a surface is created. A directional light is created and placed in
a separate model so that it does not move as the surface is rotated.

oview = obj new('IDLgrView', color=[0, 0, 0])

omodel = obj new('IDLgrModel"')
oview->add, omodel

; style = 2 is filled

osurface = obj new('IDLgrSurface', z, style=2, $
color=[255, 0, 0], bottom=[100, 0, 0])

omodel->add, osurface

olightmodel = obj new('IDLgrModel')
oview->add, olightmodel

; type = 2 is a directional light; shines from [-1, 1, 1] to [0, O, 0]
olight = obj new('IDLgrLight', type=2, location=[-1, 1, 1])
olightmodel->add, olight

Again, we will use the coordinate conversion functions to scale the surface into the view volume. Also, the model is
rotated to better show the structure of the surface:

osurface->getProperty, xrange=xr, yrange=yr, zrange=zr

XC = norm_coord(xr)

xc[0] -= 0.5

yc = norm_coord(yr)

yc[0] -= 0.5

zc = norm_coord(zr)

zc[0] -= 0.5

osurface->setProperty, xcoord conv=xc, ycoord conv=yc, zcoord conv=zc

; set a nice original orientation
omodel->rotate, [1, 0, O], -90
omodel->rotate, [0, 1, 0], -30
omodel->rotate, [1, 0, 0], 30

owindow->draw, oview

The hierarchy is now completed and the scene is drawn to the window. The Trackball object does the calculations to
rotate the surface. It computes transformation matrices representing rotations from the mouse motions of the user. It is

290

Object graphics — Widgets and objects graphics: interaction

instantiated with a center to rotate about and radius determining the distance the mouse must move to make a single
rotation of the surface. Here, the center of rotation is chosen to be the center of the draw widget and the radius is half the
maximum of the horizontal or vertical sizes of the draw widget.

otrack = obj new('Trackball', [xsize, ysize] / 2, (xsize > ysize) / 2)

The state structure contains a few object references: the view and window are necessary to redraw the graphics scene
while the model and trackball are needed to rotate the surface. The draw widget identifier is needed for resizing. A
pointer to this structure is created and stored in the top-level base's UVALUE in the standard technique for widget
program data.
; setup state structure
state = { oview: oview, $
omodel: omodel, $
owindow: owindow, $
otrack: otrack, $
draw: draw $

}
pstate = ptr_new(state, /no_copy)
widget control, tlb, set uvalue=pstate

The last thing to do in the main routine is start the program using XMANAGER:

; start XMANAGER
xmanager, 'mg surfview', tlb, /no block, $
event_handler='mg_surfview event', $
cleanup='mg_surfview cleanup'
end
Because the NO_BLOCK keyword is set, it is important to put cleanup code in a routine specified with the CLEANUP
keyword; code directly after the XMANAGER call would be executed immediately (and the program would be cleaned

up before it got going if the cleanup code were there).

The cleanup routine for this program, MG_SURFVIEW_CLEANUP, was registered with XMANAGER. It will be called
with the top-level base widget identifier as its only argument when the program is terminated. Its job is to free any

resources held by the application.
pro mg_surfview cleanup, tlb
compile opt strictarr

widget control, tlb, get uvalue=pstate

obj destroy, [(*pstate).otrack, (*pstate).oview]
ptr free, pstate
end
The Trackball object is not part of the object graphics hierarchy, so it must be freed separately from the IDLgrView
object which destroys all the objects in the hierarchy.

The event handler does the work required when the user interacts with the program. For MG_SURFVIEW, there are
only two possible user actions currently: rotating the surface and resizing the widgets. The resize case is fairly typical
of widget resizing code except that the Trackball object must be told the new size (with the Trackball::reset method) so
that it can continue to perform its calculations accurately. The resize code falls under the “tlb” case.

pro mg_surfview event, event
compile opt strictarr

widget control, event.top, get uvalue=pstate

291

Object graphics — Exercises

uname = widget_info(event.id, /uname)

case uname of
"tlb' : begin
; collect geometry information
tlbG = widget info(event.top, /geometry)

; calculate new draw widget size
new x = event.x - 2 * tlbG.xpad
new y = event.y - 2 * tlbG.ypad

; set draw widget size
widget control, (*pstate).draw, xsize=new X, ysize=new_ y

; refresh graphics
(*pstate) .owindow->draw, (*pstate).oview

; reset trackball for the new size draw widget
(*pstate).otrack->reset, [new x, new y] / 2, (new x > new_y) / 2
end
‘draw' : begin
; motion and button events must be sent to trackball; it will set update
; 1f the model needs to be rotated
update = (*pstate).otrack->update(event, transform=rotation)
if update then begin

(*pstate) .omodel->getProperty, transform=transform
(*pstate).omodel->setProperty, transform=transform # rotation
(*pstate) .owindow->draw, (*pstate).oview
endif
end
endcase

end

The code handling the rotating of the surface is a standard way of handling a Trackball object. The Trackball::update
method returns whether the user is trying to rotate the surface, i.e., holding the left mouse button while moving the
mouse. If so, the TRANSFORM keyword will return a transformation matrix that represents the rotation. The code inside
the if statement gets the current transformation matrix, performs the rotation by multiplying by the rotation matrix, puts
the resulting transformation matrix back, and redraws the screen. It is common to forget to redraw the window, but the
changes will not be seen if it is not redrawn.

Cases can easily be added to the event handler as new widgets are added to the widget hierarchy. As more cases are
added and the event handler routine becomes longer, it would be beneficial to move the code for the cases to individual
routines that are simply called in the case statement. In larger applications, the event handler is usually just a dispatcher
to many other routines that actually do the work.

Displaying an object graphics scene in a widget program opens up the possibility to quickly add many powerful features.
The fact that the properties of the objects in the hierarchy are persistent, can be queried, and can be selectively changed
creates this power. Currently, MG_SURFVIEW is a framework to which many more interesting features can be added.

Exercises

The following exercises all describe modifications to MG_SURFVIEW demonstrating how easy it is to add powerful
interactive features to an object graphics scene in a widget program. Many of these exercises can be done in a few lines
of code, others are more involved.

292

9.14.

Object graphics — Widgets and object graphics: tiled imagery

Display the data coordinates under the mouse in a status bar bottom the draw widget. Use the
IDLgrWindow::pickData method to find the coordinates. (The IDLgrWindow::select method can be used to find
the the graphics atoms under the cursor in a more complicated graphics scene, but that is not necessary in this
program since there is only one graphics atom.)

Make a double-click in the graphics window reset the surface to its original orientation.

Add a toolbar above the draw widget with a button to output the contents of the draw widget to a PNG file. See
Section 9.11, “Sending output to other destinations” [p. 283] about getting an image of a graphics scene.
Make sure to not leak any memory, i.e., cleanup any newly created objects.

Rotate the light instead of the surface when the user holds the shift key down while doing the normal rotation
with the mouse.

Use the keyboard arrow keys to rotate the surface (left and right keys) and to zoom in/out (up and down keys).
Set the KEYBOARD_EVENTS keyword of WIDGET_DRAW to 2 to generate keyboard events. Modify the event
handler to handle these new events.

Rotating graphics interactively can be slow if there is a lot of data. One way to improve the response is to
simplify the graphics so that they can be rendered faster. Change the style of the surface to mesh while the user
is rotating it.

Widgets and object graphics: tiled imagery

The MG_TILEJP2 example widget program uses the tiling capabilities of IDLgrImage and IDLgrWindow added in

IDL 6.2 to view large images without reading all the data of the image. There are no features in this application except

navigation around a large image.

The controls for navigating the image are simple: drag the image with the mouse (or use the arrow keys), zoom in/out

with the mouse scroll wheel (or page up/down), or reset the view with the home key. The application is shown below.

293

Object graphics — Widgets and object graphics: tiled imagery

606 [X| JPEG2000 tile viewer

Using MG_TILEJP2 to display a JPEG2000 version of the ohare. jpg file in the example data of the IDL distribution.

This program uses JPEG2000 files because it is easy to pull out a section from the file. It would possible to modify this
program to use TIFF, MrSID, or even band-sequential binary files.

The main routine MG_TILEJP2 is responsible for all initialization; in this case, creating the widget tree, the object
graphics hierarchy, and the state structure to store the data needed in the event handlers. The routine takes the JPEG2000
filename as an argument and checks it for validity:

pro mg tilejp2, jp2filename, renderer=renderer

compile opt strictarr
on _error, 2

_jp2filename = (n_elements(jp2filename) eq 0) ? 'ohare.jp2' : jp2filename

if (~file test(jp2filename)) then begin
message, 'JPEG2000 file not found'
endif

Instead of creating a single IDLffJPEG2000 object and saving it away, IDLffJPEG2000 objects will be created as needed
and freed immediately. The dimensions of the JPEG2000 image and each tile in the image will be needed when creating
the IDLgrImage, so an IDLffJPEG2000 object is created to query for them:

0jp2 = obj new('IDLffIJPEG2000', jp2filename)

ojp2->getProperty, dimensions=imageDims, tile dimensions=jp2TileDims

obj destroy, ojp2
The widget hierarchy is extremely simple, just a top-level base and a draw widget to display the imagery. Remember, it
is necessary to set GRAPHICS_LEVEL of WIDGET_DRAW to 2 to display object graphics. To setup the keyboard events
correctly, set KEYBOARD_EVENTS to 2 (setting it to 1 just turns on alphabetic keyboard events). Also, the draw widget

294

Object graphics — Widgets and object graphics: tiled imagery

is given input focus (with the INPUT_FOCUS of WIDGET_CONTROL) so that keyboard events are generated without the
user having to first click on the draw widget.

windowDims = [500, 500]

; create widget hierarchy
tlb = widget base(title='JPEG2000 tile viewer', /column, /tlb size events, $
uname='tlb', xpad=0, ypad=0)
draw = widget draw(tlb, xsize=windowDims[0], ysize=windowDims[1], $
uname='draw', graphics level=2, renderer=renderer, $
/button_events, /motion events, /wheel events, $
keyboard events=2)

widget control, tlb, /realize
widget control, draw, /input focus
widget control, draw, get value=owindow

The object graphics hierarchy is also simple—only view, model, and image objects are needed. Set the view's
VIEWPLANE_RECT property to the size of the draw window so that one unit in the object graphics scene will correspond
to one pixel in the draw widget:

; create object graphics hierarchy

oview = obj new('IDLgrView', name='view', color=[0, 0, 0], $
viewplane rect=[0, 0, windowDims[0], windowDims[1]])

omodel = obj new('IDLgrModel', name='model')

oview->add, omodel
The image requires several tiling specific keywords. Tiling is turned on with the TILING keyword; the image and tile
dimensions values are passed along from the IDLffJPEG2000 properties. The TILE_LEVEL_MODE keyword is set 1,
indicating that the data source has an image pyramid, i.e., data of various resolutions depending on the zoom level. The
TILE_SHOW_BOUNDARIES keyword can be useful when debugging, but is turned off now.

oimage = obj new('IDLgrImage', name='image', $

order=1, $

/tiling, $

tile show boundaries=0, $

tile level mode=1l, $; automatic mode for image pyramid

tiled image dimensions=imageDims, $
tile dimensions=jp2TileDims)
omodel->add, oimage

A pointer is created to a state structure and stored in the top-level base's “uvalue” as usual. The window and view are
required for redrawing, the window dimensions are needed for resizing, the JPEG2000 filename is needed for getting
data, and the rest of the variables indicate the state of the panning/zooming.

; setup data for event handlers

state = { owindow: owindow, $
oview: oview, $
windowDims: windowDims, $
buttonsDown: 0B, $
curLoc: [OL, OL], $
pressLoc: [OL, OL], $
zoomLevel: OL, $
zoomFactor: 1.0, $
jp2filename: jp2filename $

}

pstate = ptr _new(state, /no_copy)

295

Object graphics — Widgets and object graphics: tiled imagery

widget control, tlb, set uvalue=pstate

Before starting, the current location of the image is drawn (the lower left corner of the image since curLoc starts at [0,
0]):

mg tilejp2 refresh, pstate

As usual, XMANAGER starts the event loop, declares the routine to handle events, and specifies the routine to handle the
cleanup for the program:

xmanager, 'mg tilejp2', tlb, /no block, $
event handler='mg tilejp2 event', $
cleanup='mg_tilejp2 cleanup'
end

This has initialized the program; the rest of the routines respond to user actions.

The cleanup routine simply destroys the object graphics hierarchy and frees the pstate pointer:

pro mg_tilejp2 cleanup, tlb
compile opt strictarr

widget control, tlb, get uvalue=pstate

obj destroy, (*pstate).oview
ptr free, pstate
end

The JPEG2000 object used in the program is not kept; it is created and destroyed as needed, so it does not need to be
deleted here.

The event handler for the program merely dispatches events to other routines based on the UNAME of the widget that
generated the event.

pro mg_tilejp2 event, event
compile opt strictarr

uname = widget_info(event.id, /uname)

case uname of

'"tlb' : mg_tilejp2 resize, event
'draw' : mg tilejp2 draw, event
endcase

end

This scheme scales well for larger, more complicated programs that have many widgets generating events.

The draw widget event handler must handle press, release, motion, and keyboard events. The buttonsDown field of the
state structure, like event.press and event.release, is a bitmask containing the buttons currently pressed (1 for left
mouse button, 2 for middle, 4 for right). The press event also remembers the location of the mouse if it was a left button
press:

pro mg tilejp2 draw, event
compile opt strictarr

widget control, event.top, get uvalue=pstate
case event.type of

0 : begin ; press event

296

Object graphics — Widgets and object graphics: tiled imagery

(*pstate) .buttonsDown or= event.press
if (event.press and 1B) then begin
(*pstate).pressLoc = (*pstate).curLoc + [event.x, event.y] * (*pstate).zoomFactor
endif
end
1 : (*pstate).buttonsDown and= not event.release ; release event

When the left mouse button is held and the mouse is moved, a new location for the viewport is calculated by converting
event.x and event.y to pixel coordinates and determining the shift from the location where the mouse was originally
pressed:

2 : begin ; motion event
if ((*pstate).buttonsDown and 1B) then begin
loc = (*pstate).pressLoc - [event.x, event.y] * (*pstate).zoomFactor
mg_tilejp2 move, pstate, loc
endif
end

Expose events just require redraw of the window; scroll and ASCII keyboard events are ignored:

3 ; scroll event
4 : (*pstate).owindow->draw, (*pstate).oview ; expose event
5: ; ASCII key event

Non-ASCII keyboard presses are handled next. The arrow keys move an eighth of the window size in the given
direction. Page up/down increase/decrease the zoom level by 1. The home key resets to the original location and zoom
level.

6 : begin ; non-ASCII key event
if (event.release ne 0) then return
winSize = (*pstate).windowDims * (*pstate).zoomFactor
case event.key of
5 : begin ; left
loc = (*pstate).curLoc + [- winSize[0] / 8, 0]
mg_tilejp2 move, pstate, loc
end
6 : begin ; right
loc = (*pstate).curLoc + [winSize[O] / 8, 0]
mg_tilejp2 _move, pstate, loc

end

7 : begin ;up
loc = (*pstate).curLoc + [0, winSize[1l] / 8]
mg tilejp2 move, pstate, loc

end

8 : begin ; down

loc = (*pstate).curLoc + [0, - winSize[1l] / 8]
mg_tilejp2 move, pstate, loc

end

9 : mg tilejp2 zoom, pstate, 1 ; page up
10 : mg tilejp2 zoom, pstate, -1 ; page down
11 : begin ; home

(*pstate).curLoc = [OL, OL]
(*pstate).zoomLevel = OL
(*pstate) .zoomFactor = 2.0"(*pstate).zoomLevel
mg tilejp2 setvp, pstate, [(*pstate).curLoc, (*pstate).windowDims]

end

else :

endcase
end

297

Object graphics — Widgets and object graphics: tiled imagery

For scroll wheel events, the clicks field contains negative values for scrolling down and positive values for scrolling
up (usually 1 and -1, but they can be higher if the user scrolls quickly). This value is passed to MG_TILEJP2_ZOOM to
change the zoom level:

7 : begin ; wheel event
mg_tilejp2 zoom, pstate, event.clicks
end
endcase

end

Next, let’s tackle the helper routines called by this event handler.

The MG_TILEJP2_MOVE procedure does a translation of the viewport to the given location loc:

pro mg tilejp2 move, pstate, loc
compile opt strictarr

(*pstate).curLoc = loc
vp = [loc, (*pstate).windowDims * (*pstate).zoomFactor]
mg tilejp2 setvp, pstate, vp

end

Calling this routine changes the VIEWPLANE_RECT property of the view and redraws the window.

The MG_TILEJP2_SETVP procedure is a convenience to set the VIEWPLANE_RECT property of the view and redraw the
scene.

pro mg_tilejp2 setvp, pstate, vp
compile opt strictarr

(*pstate) .oview->setProperty, viewplane rect=vp
mg tilejp2 refresh, pstate
end
Redrawing the scene is not simply a call to IDLgrWindow::draw though; the appropriate tiles need to be read and loaded
into the image in the MG_TILEJP2_REFRESH procedure before the draw method can be called.

The MG_TILEJP2_REFRESH procedure queries the window for what tiles are needed, reads the data needed from the
JPEG2000 file, loads them into the image, and redraws the window. It’s a helper routine that takes a pointer to the state
structure, getting the image object by name:

pro mg tilejp2 refresh, pstate
compile opt strictarr
oimage = (*pstate).oview->getByName('model/image')
Next, the tiles required to display the current viewport are calculated:

reqTiles $
= (*pstate).owindow->queryRequiredTiles((*pstate).oview, $
oimage, $
count=nTiles)

Let’s turn the mouse into an hourglass if we actually have tiles to read and load:
if (nTiles gt 0) then widget control, /hourglass

We could create an IDLffJPEG2000 object in two places: either outside the loop over the tiles or inside the loop. The
PERSISTENT keywords needs to be set differently in these two cases. If only one data access is to be done on the object,
PERSISTENT can be set to 0, which minimizes memory by discarding data whenever possible. If multiple accesses are
needed, PERSISTENT must be set to 1, the default:

298

Object graphics — Widgets and object graphics: tiled imagery

0jp2 = obj new('IDLffJPEG2000', (*pstate).jp2filename, $
persistent=1)

Finally, we are ready to pull each tile from the data file and load it into the image object.

for t = OL, nTiles - 1L do begin
subrect = [reqTiles[t].x, reqTiles[t]l.y, $
reqTiles[t].width, reqTiles[t].height]

level = reqTiles[t].level
scale = ishft(1l, level) ; scale = 2"level
subrect *= scale

tileData = ojp2->getData(region=subrect, $
discard levels=level, $
order=1)

oimage->setTileData, reqTiles[t], tileData, no free=0
endfor

Note that ISHFT is used to efficiently compute 2~ level; it is commonly used to multiply or divide a value by a power of
two. The JPEG2000 object is no longer needed and can be destroyed:

obj destroy, ojp2
Finally, the draw method displays the results:

(*pstate).owindow->draw, (*pstate).oview
end

The hourglass does not need to be turned off —it will automatically revert when the event handler finishes executing.

The MG_TILEJP2_ZOOM procedure zooms in or out from the current level. The main computation of the routine is the
calculation of a value of the VIEWPLANE_RECT property based on the current location and zoom level and modified by

the change in the zoom level, incLevel.
pro mg _tilejp2 zoom, pstate, inclLevel
compile opt strictarr

(*pstate).zoomLevel += inclLevel

dims = (*pstate).windowDims * (*pstate).zoomFactor
(*pstate).zoomFactor = 2.0 (*pstate).zoomLevel
(*pstate).curLoc += (dims - (*pstate).windowDims * (*pstate).zoomFactor) / 2.0

vp = [(*pstate).curLoc, (*pstate).windowDims * (*pstate).zoomFactor]
mg tilejp2 setvp, pstate, vp
end

The MG_TILEJP2_SETVP procedure is called to change the VIEWPLANE_RECT and refresh the display.

The resize routine does straightforward widget resizing of the draw widget, but the content in the draw widget must be

updated because more tiles may be needed if the window is larger.

pro mg tilejp2 resize, event
compile opt strictarr

widget control, event.top, get uvalue=pstate

t1lbG = widget info(event.top, /geometry)
draw = widget info(event.top, find by uname='draw')

299

Object graphics — Exercises

(*pstate) .windowDims = [event.x - 2 * tlbG.xpad, event.y - 2 * tlbG.ypad]
widget control, draw, $
xsize=(*pstate).windowDims[0], $
ysize=(*pstate).windowDims[1]

; fix up object graphics hierarchy
vp = [(*pstate).curLoc, (*pstate).windowDims * (*pstate).zoomFactor]
mg tilejp2 setvp, pstate, vp

end

The MG_TILEJP2_SETVP procedure is again called to load new tiles and refresh the display. The dimensions of the draw
widget are saved during this calculation because they are needed in the MG_TILEJP2_ZOOM procedure.

The MG_TILEJP2_DEMO procedure is a wrapper around MG_TILEJP2 that loads a default data set. The MG_TILEJP2
procedure uses a JPEG2000 image. Because a JPEG2000 image is not provided with the IDL distribution, one is created
from ohare. jpg, a 5000 by 5000 pixel TrueColor image included in the examples data.

pro mg tilejp2 demo, renderer=renderer
compile opt strictarr

jp2filename = 'ohare.jp2'

; check if ohare.jp2 is present, create if not present
if (~file test(jp2Filename)) then begin
jpegFilename = filepath('ohare.jpg', $
subdirectory=['examples', 'data'l)
read jpeg, jpegFilename, jpegImage
imageDims = size(jpegImage, /dimensions)

; create the JPEG2000 image object
jp2 = obj new('IDLffJPEG2000', jp2Filename, write=1)
jp2->setProperty, n_components=3, $
n layers=20, $
n_levels=6, $
offset=[0, 0], $
tile dimensions=[1024, 1024], $
tile offset=[0, 0], $
bit depth=[8, 8, 8], $
dimensions=[imageDims[1], imageDims[2]]

; Set image data, and then destroy the object. You must create
; and close the JPEG2000 file object before you can access the
; data.
jp2->setData, jpegImage
obj destroy, jp2

endif

; start mg_tilejp2

mg tilejp2, jp2Filename, renderer=renderer
end

The IDLffJPEG2000: :setProperty call sets the image object to use 3 channels (with 8 bits per channel), 20 quality layers,
6 wavelet decomposition levels, and 1024 by 1024 pixel tiles.

Exercises

The following exercises describe modifications to the MG_TILEJP2 program.

300

Object graphics — Function graphics
1. Export the visible portion of the image to a PNG file when the “s” key is pressed.

9.15. Function graphics

Introduced in IDL 8.0, “function graphics”1 provide an easy-to-use interface to object graphics without the low-level
details of the object graphics system or the complexity of the iTools system. Although function graphics are based on the
iTools framework, they have an entirely different interface.

Table 9.9. Examples of function graphics displays

000 A Plot

050 Py T T T T T T T T I T [T I I I [T T T I [T

250 Lo
200 f -

150 [4
150 =

100 |1
100

50 |- H

Ll L b
L L L L
300 400 500 % 100 200 300 400 500

07\\\\\\\\\‘\\\\\\\\\‘\HH
0 100 200

2a =Y ANDOG¢ e . - _
fass (G LYRAEHO |7)

Displ. le data file usi ti
isplay of example data file using function Display of example data file using function graphics

graphics from the command line uses the from the IDL Workbench uses the Qt widget toolkit.

default widget system (shown for Mac OS X).

The function graphics interface combines much of the ease of use of direct graphics with the power and flexibility of
object graphics.

Let’s do a simple example to demonstrate the simple function graphics interface. First, read in two 1-dimensional data
sets to plot:

IDL> waves = (read ascii(file which('sine waves.txt'))).fieldl
Create the plot object, along with its corresponding display, with the data from the first curve:

IDL> pl = plot(waves[0, *])

The pl variable above is an object and can be used later to refer to the plot, change properties of the plot, or perform
other actions on the plot:

IDL> help, pl
P1 PLOT <21286>

The second data set can be overplotted on the first plot using the OVERPLOT keyword:

IDL> p2 = plot(waves[1l, *], /overplot, color='red')

'Function graphics were introduced as “graphics” by ITT VIS, but that leads to much confusion in practice. The comp.lang.idl-pvwave newsgroup
calls them “new graphics” or “function graphics”, so the “function graphics” convention will be used in this book.

301

Object graphics — Function graphics

This should produce the following display:

ano [\ Plot

250

200

150 / J
100 l
B |
50 :— * H
0 _I | | | L1 I L1111 L1l 111 I 1 JI [IALE] 1 I
0 100 200 300 400 500

=b KRBT ANOOG3Y

[408,524]

EN

Simple function graphics display of two vector data sets as overplotted line plots.

Properties of the plot can be changed easily using the dot notation:
IDL> pl.linestyle = 'dashed'’

The available properties for a function graphics line plot can be found in the online help for the PLOT function, but they
can also be listed, along with their values, just by printing the object:

IDL> print, pl
PLOT <28162>

ANTIALIAS =1

ASPECT_RATIO = 0.0000000
ASPECT_Z = 0.0000000
BACKGROUND_COLOR = 255 255 255
COLOR =0 0 0
DEPTH_CUE = 0.00000 0.00000
ERRORBAR_CAPSIZE = 0.20000000
ERRORBAR_COLOR =0 0 0
FILL_BACKGROUND =0

FILL_COLOR = 128 128 128
FILL_LEVEL = 1.0000000e-300
FILL_TRANSPARENCY =0

HIDE =0

LINESTYLE =2

MAX_VALUE = NaN

MIN_VALUE = NaN

302

Object graphics — Function graphics

NAME = 'Plot’

SYMBOL =0

SYM COLOR =0 0 0

SYM FILLED =0

SYM FILL COLOR =0 0 0

SYM_ INCREMENT =1

SYM SIZE = 1.0000000

SYM_THICK = 1.00000

SYM_TRANSPARENCY =0

THICK = 1.00000

TITLE = <NullObject>

TRANSPARENCY =0

WINDOW TITLE = 'Plot’

XRANGE = 0.0000000 511.00000
YRANGE = 0.0000000 255.00000
ZRANGE = 0.0000000 0.0000000

These properties can be accessed using the dot notation or the standard getProperty/setProperty methods.
The following table gives a short description and some examples of the function graphics routines.

Table 9.10. Function graphics routines

Routine Description
BARPLOT Syntax
graphic = barplot(values [, extra=e])
graphic = barplot(locations, values [, extra=el])

The BARPLOT is used to create various types of bar plots, including stacked bar plots, grouped bar
plots, and floating bar plots. For example, the following should produce a grouped bar plot of ten
series of three bars:

nBars = 3
nSeries = 10
colors = ['maroon', 'goldenrod', 'dark olive green']

data = randomu(seed, nSeries, nBars)
b = barplot(data[*, 0], nbars=nBars, index=0, fill color=colors[0], $
axis style=1, font size=11, dimensions=[800, 300])
for i = 1L, nBars - 1L do $
b = barplot(data[*, i], nbars=nBars, index=i, fill color=colors[i], $
axis style=1, /overplot, font size=11)

The graphic should look like:

0.8
0.6
0.4

0.2

0.0

CONTOUR Syntax:

graphic = contour(z [, x, y] [, _extra=e])

303

Object graphics — Function graphics

Routine Description

The CONTOUR procedure is used to create a contour plot. For example, a standard contour plot can be
created easily:

restore, filename=file which('marbells.dat"')
fill = contour(elev, n_levels=20, rgb_table=4, dimensions=[500, 5001, $
font_size=11)

This should produce the following graphic:

WAZ

50 100 150 200 250 300

There are options to create filled contours and 3-dimensional contour plots as well.
ERRORPLOT Syntax

graphic = errorplot(y, yerror [, format], [, _extra=e])
graphic = errorplot(x, y, xerror, yerror [, format] [, extra=e])
graphic = errorplot(x, y, yerror [, format] [, extra=e])

The ERRORPLOT function produces a line plot with error bands. It can accept error values for the y-
axis values or both the x- and y-axis values. For example, the following constructs a simple example:

n = 100
sin(findgen(n) / (n - 1) * 360 * !dtor) $
+ smooth(randomu(seed, 360) * 0.1, 3, /edge truncate)
yerror = randomu(seed, n) * 0.1
yerror = smooth(yerror, 3, /edge truncate)
x = findgen(n)
p errorplot(x, y, yerror, errorbar _capsize=0., errorbar_color='red', $
dimensions=[800, 300], font size=11)

The graphic should look like:

304

Routine

IMAGE

MAP

Object graphics — Function graphics

Description
1 0 T I T T T I T T T —]
05 4
00 - 4
-0.5F =
-1.0 £ 1 1 1 | 1 1 1 | 1 -

0 20 40 60 80
Syntax:

graphic = image(data [, x, yl [, _extra=e])
graphic = image(filename)

Images can be displayed given a filename to the image data in a common image file format:
IDL> im = image(file _which('people.jpg'))
Image data can also be displayed directly:

IDL> data = read_image(file_which('endocell.jpg'))

IDL> im = image(data, findgen(615), findgen(416), rgb table=5, axis style=2)
There are many properties to an image object which control aspects of the image and axis display.
Here, the RGB_TABLE keyword is specifying to use color table 5 (equivalent to using loadct, 5
in direct graphics). The AXIS_STYLE keyword indicates that box axes should be placed around the
image: 0 is no axis, the default; 1 is axes on the minimum edge; 2 is box axes; and 3 is crosshair axes.

Syntax:

graphic = map(projection [, _extra=e])

The MAP function initializes a map projection for a particular area. Further data and annotations can
be made with map-specific function graphics routines, like MAPGRID or MAPCONTINENTS, or other
general function graphics annotation routines. For example, the following code sets up a map and
displays some annotations:

map = map('Mercator', limit=[32, -120, 46, -92], $
fill color='light blue', title='Colorado')

grid = map.mapgrid
grid.linestyle = 'dotted'
grid.label position = 0
grid.font size = 11
grid.grid latitude = 2
grid.grid longitude = 2

states = mapcontinents(/usa, fill color='light green', thick=2., combine=0)

m = map['Colorado']
m.fill color = 'orange'

map['40N'].linestyle = 'dashed'
area = mapgrid(color='gray', $
longitude min=-112., longitude max=-104.5, $

latitude min=35.5, latitude max=41.5, $
grid longitude=0.5, grid latitude=0.5, $

305

Object graphics — Function graphics

Routine Description
label show=0)
; the SYMBOL routine was added in IDL 8.1

sym = symbol(-104.98, 39.74, 'circle', /sym filled, $
sym color='red', label string='Boulder', /data)

This should produce the following graphic:

Colorado
46N
44N
42N
40N
38N
36N
34N
32N
$ ¥ % 32 % 3% 2% 83 % % % %
g 22 ¥ Y2 383988883 8
PLOT Syntax:
graphic = plot(y [, format] [, extra=e])

graphic = plot(x, y [, format] [, extra=e])

The PLOT function produces scatter and line plots, similar to the old PLOT direct graphics routine. For
example, the following produces a line plot with the data points marked by symbols:

d
p

read binary(file which('dirty sine.dat'), type=1, data dims=[256])

plot(d, color='grey', title='dirty sine.dat',6 axis style=1, $
symbol='circle', sym color='red', /sym filled, sym size=0.75, $
dimensions=[900, 400])

The output should look like the plot below.

306

Routine

PLOT3D

POLARPLOT

Object graphics — Function graphics

Description

dirty_sine.dat

The possible symbol values are listed below, with most symbol types having a case-insensitive

standard name and a case-sensitive short form:

“None” (the default)
“Plus” or “+”
“Asterisk” or “*”
“Period” or “dot”
“Diamond” or “D”
“Triangle” or “tu”
“Square” or “s”

oy

“Greater_than” or “>”

Syntax:

“Less_than” or “<”
“Triangle_down” or “td”
“Triangle_left” or “t1”
“Triangle_right” or “tr”
“Tri_up” or “Tu”
“Tri_down” or “Td”
“Tri_left” or “T1”
“Tri_right” or “Tr”
“Thin_diamond” or “d”

graphic = plot3d(x, y, z [, format] [, _extra=el])

The PLOT3D function creates 3-dimensional scatter or line plots. The following code produces a

spiral line plot:

nturns = 3
t

cos(t)
sin(t)
t

T N < X
L}

findgen(360 * nturns) * !dtor

plot3d(x, y, z, color='red', thick=2., $
axis style=2, $

[}

“Pentagon” or “p
“Hexagon_1" or “h”
“Hexagon_2" or “H”

“I”

“Vline” or
4‘H1in677 Or ‘L_??
“Star” or “S”

“Circle” or “0”

xy_shadow=1, yz shadow=1, xz_shadow=1, shadow_color='light blue')

].hide = 1
1
1

)
x
®
1%
N o N
> =
B
o o
m O
nn

Syntax:
graphic

polarplot(theta [, format] [, extra=e])
graphic = polarplot(r, theta [, format]

[, extra=el)

The POLARPLOT graphics function produces polar plots, i.e., line plots specified in polar coordinates

like the following plot of a cardioid:

theta = findgen(360) * !dtor

r=2.% (1. - cos(theta))
polarplot(r, theta, axis style=3, xrange=[-4, 4], yrange=[-4, 4])

p

307

Object graphics — Function graphics

Routine Description

This produces the following plot:

4

STREAMLINE Syntax:

graphic = streamline(u, v [, x, y] [, format] [, _extra=e])

The STREAMLINE function draws streamlines from a grid of initial points:

restore, filepath('globalwinds.dat', subdir=['examples', ‘'data'l])

s = streamline(u, v, x, y, rgb _table=3, auto color=1, $
x_streamparticles=50, y streamparticles=50, arrow_size=0., $
font_size=11)

This should produce the following graphic:

1/)])
/y//////
/

i

NP7 N
0

SURFACE Syntax:

graphic = surface(z [, x, yl [, format] [, extra=el])

308

Object graphics — Function graphics

Routine Description
The SURFACE graphics function can produce surface plots of 2-dimensional data. It can also drape
imagery over the surface as in this code:
elev = read binary(file which('elevbin.dat'), data dims=[64, 64], type=1)
image = read image(file which('elev_t.jpg'))
s = surface(elev, texture image=image, zrange=[0, 1000])
VECTOR Syntax:

graphic = vector(u, v [, x, y]l [, format] [, _extra=e])

The VECTOR function creates a standard grid of arrows or wind barbs to visualize a vector field. The
2-dimensional components of the vector field are passed to VECTOR first, then, optionally, the values
for the x- and y-axes. There are multiple keywords to control aspects of the arrows. For example, the
following creates a basic vector field plot:

restore, filepath('globalwinds.dat', subdir=['examples', 'data'])

vec = vector(u[0:*:4, 0:*:4], v[0:*:4, 0:*:4], x[0:*:4], y[0:*:4], $

/head_proportional, head _size=0.5, length_scale=0.5, $
font size=11)

This should produce the following graphic:

W - VA RR LI ATIT T = ¢ - s eSS At x vl
ARENL T R o o N N R I N A & R W WA
R S N e N AR T VIR 2 I BV
;L|)i\\»»a\»&\v»»»»»\\\-;zaa»t*\

Ly

50

R I = N N Y B S N P AR
R o N IR N N N R 2
K72 N« A RECRREKRAKK) €« e€rren R - mwwR
Off=—* » Sttt v v vt et et e R R KRR
b B R B R I N e T T 4
F r £ b4 - t > 21 &k~ s 4« € eeweei Vo “caedi-
Fevsss v r v v v Reecvewd Nt~ VEReed]
P I I I TP . I S

X
_50}—
>, ;4\“‘..“yr|r1..‘..\,x,.;\f.,
M v

.

All function graphics objects have close, convertCoord, copyWindow, getSelect, order, print, refresh, rotate, save, scale,

select, and translate methods.

The following is a list of helper routines used for producing annotations on existing graphics with the exception of the

WINDOW function to create function graphics windows.

Table 9.11. Function graphics helper routines

Routine Description

ARROW Syntax:

graphic = arrow(x, y [, z] [, _extra=e])

The ARROW function creates arrow annotations:

plot(/test)
arrow([150., 132.], [0.5, 0.3], /data, head size=0.5)

p
a

309

Object graphics — Function graphics

Routine Description
t = text(151., 0.5, 'Important point', /data)

AXIS Syntax:

graphic = axis(direction [, extra=e])

The AXIS function creates a new axis on the current graphic window. The positional parameter
specifies the direction of the axis: “x”, “y”, or “z”. The LOCATION keyword sets the location of the
axis, while the TEXTPOS and TICKDIR determine on which side of the axis the labels and tickmarks
appear. The following code places an inches and a centimeter scale on a plot of values:
n = 100
data = smooth(randomu(seed, n), 3, /edge truncate)
p = plot(data, margin=[0.15, 0.15, 0.15, 0.15], $
axis style=1, thick=2., yrange=[0., 1.], ytitle='inches"')
yaxis = axis('y', location=[n - 1., 0.], $
title='cm', tickdir=1l, textpos=1l, ticklen=0.025, $
tickvalues=findgen(6) / 2. / 2.54, $
tickname=string(findgen(6) / 2., format='(%"%0.1f")"))

COLORBAR Syntax:

graphic = colorbar([extra=e])

Used to create a colorbar. The TARGET property specifies a graphics object whose color table will be
used to construct the colorbar. Set ORIENTATION to 0 for horizontal or 1 for vertical. For example,
try:

restore, filename=file which('marbells.dat"')

im = image(elev, rgb table=9, position=[0.25, 0.05, 0.95, 0.95], $

dimensions=[500, 5001])
c = colorbar(target=im, orientation=1, position=[0.15, 0.05, 0.2, 0.95], $
font size=11, ticklen=0.2)

ELLIPSE Syntax:

graphic = ellipse(x, y, [, z] [, format] [, major=major] [, minor=minor] [, extra=el])

The ELLIPSE function draws an ellipse on an existing graphic window:

p = plot(findgen(11l), /nodata)
e = ellipse(5., 5., major=2., minor=1., /data)
LEGEND Syntax:

graphic = legend([extra=e])

Used to create a legend. Use the TARGET property to specify graphics objects to be listed in the
legend. Properties of the specified graphics are used in the listing, particularly the NAME property. For
example, try:
restore, filename=file which('plot_data.sav')
help, plot data, /structures
pl = plot(plot data.time, plot data.templ, name='Temp 1', color='coral', $
thick=2, dimensions=[700, 300], font size=12)
p2 = plot(plot data.time, plot data.temp2, name='Temp 2', /overplot, $
color="'cadet blue', thick=2)
legend = legend(target=[pl, p2], position=[0.2, 0.80], /normal, linestyle=6, $
font size=12)

MAPCONTINENTS Syntax:

graphic = mapcontinents([filename] [, _extra=e])

310

Object graphics — Function graphics

Routine Description
The MAPCONTINENTS function places continent outlines, country outlines, US state outlines,
Canada province outlines, lakes, or rivers on a map. See the description of the MAP function above for
an example of using MAPCONTINENTS.

MAPGRID Syntax:

graphic = mapgrid([, _extra=e])

The MAPGRID function places gridlines on a map. See the description of the MAP function above for
an example of using MAPGRID.

POLYGON Syntax:

graphic = polygon(x, y [, z] [, _extra=el])

The POLYGON function creates a 2- or 3-dimensional polygon in an existing graphic. For example,
the following example code produces the familiar cow polygon:

restore, filename=file which('cowl0.sav')

range = [-0.6, 0.6]

p = plot3d(range, range, range, /nodata, axis style=2)
axes = p.axes

axes[2].hide = 1

axes[6].hide = 1

axes[7].hide = 1

cow = polygon(x, y, z, connectivity=polylist, /data)

This produces the following graphic:

POLYLINE Syntax:

graphic = polyline(x, vy, [, z] [, format] [, extra=e])

The POLYLINE graphics function draws line segments on an existing plot. For example, the following
code shows how to draw a vertical line through a plot:

d read binary(file which('dirty sine.dat'), type=1, data dims=[256])
p plot(d, color='grey', dimensions=[900, 400])
line = polyline(fltarr(2) + 200., p.yrange, color='red', linestyle='dashed', thick=2., /data)

SYMBOL Syntax:
symbol = symbol(x, y, symbol)

311

Object graphics — Function graphics

Routine Description

The SYMBOL function places a symbol on a graphic:

plot(sin(findgen(360) * !dtor))
symbol(0., 0., 'star', sym color='red', label='Origin', /data)

p
s

Coordinates can be specified in data, normal (the default), and device coordinates. The SYMBOL
function was added in IDL 8.1.

TEXT Syntax:

graphic = text(x, y, [z,] string [, format] [, _extra=e])

The TEXT function places text on a graphic:

p = plot(sin(findgen(360) * !dtor))
t = text(0., 0., 'Origin', /data)
t = text(0.5, 0.925, 'Heading', alignment=0.5, /normal)

Coordinates can be specified in data, normal, and device coordinates (the default).

WINDOW Syntax:

graphic = window([, extra=e])

An empty graphics window can be created with the WINDOW function. Use the CURRENT keyword
to make the other graphics window routines that would normally create their own window to instead
use the current graphics window. For example, the following creates a window separately from the
line plot visualization:

w = window(dimensions=[800, 300])
p = plot(findgen(1l), /current)

A WINDOW object has close, convertCoord, print, and save methods.

The currently available windows can be obtained from the GETWINDOWS function:

IDL> p = plot(/test)

IDL> c = contour(/test)

IDL> print, getwindows()

<ObjHeapVar15493 (GRAPHICSWIN)><0bjHeapVar22443 (GRAPHICSWIN)>

Buffers are not included in this, only displayed windows. The GETWINDOWS also accepts a
parameter for the name of the window to retrieve. The first match will be returned.

To create a function graphics window in a widget program, use WIDGET_WINDOW. There is a short
example program MG_WIDGET_WINDOW_EXAMPLE described below.

It is possible to create graphics which are not displayed on the screen, a useful technique when creating many graphics
output files like PNG or Postscript files. Use the BUFFER keyword to create a graphic which isn’t displayed:

IDL> p = plot(sin(findgen(360) * !dtor), /buffer)
The save method can then be used to send the output from the graphic to an output file:
IDL> p->save, 'sinewave.png', width=600

The WIDTH keyword sets the width of the PNG file in pixels (in inches or centimeters for PDF output); the height will be
calculated from the aspect ratio of the graphic. The raw screen buffer data can be obtained from a graphic using:

IDL> im = p.window.image data

IDL> help, im

IM BYTE = Array[3, 640, 512]
IDL> window, xsize=640, ysize=512

IDL> tv, im, true=1l

312

Object graphics — Function graphics

Note that displayed graphics are automatically cleaned up when their windows are closed, but graphics displayed in
buffers should be manually destroyed:

IDL> p->close

Of course, the automatic garbage collection in IDL 8.0 would automatically free the buffer graphic when there are no
more object references to it.

It is also possible to temporarily stop a window from refreshing in order to make several changes. This improves the
speed of the drawing as well as eliminating any flashing when the redrawing is done. For example, the example for

the BARPLOT function above drew its output in several calls to BARPLOT with the OVERPLOT keyword set, each
redraw adding a new set of bars and possibly changing the scale of the draw. In the below modification, we turn off the
redrawing in the window until the graphic is complete:

nBars = 3
nSeries = 10
colors = ['maroon', 'goldenrod', 'dark olive green']

data = randomu(seed, nSeries, nBars)
w = window(dimensions=[800, 300])
w->refresh, /disable
b = barplot(datal[*, 0], nbars=nBars, index=0, fill color=colors[0], $
axis style=1l, /current, font size=11)
for i = 1L, nBars - 1L do $
b = barplot(datal[*, i], nbars=nBars, index=i, fill color=colors[il, $
axis style=1l, /overplot, font size=11)
w->refresh
The explicit creation of the graphics window and the two calls to window::refresh, one to disable refreshing and one to

turn it back on, are the only differences from the previous example.

There are a few methods that are common for all the graphic classes. Listed below are the common methods and their
most common keywords.

graphic::close
The close method closes the graphic’s window.

graphic::delete
The delete method deletes the graphic from the window it was displayed in. Added in IDL 8.1.

im = graphic::copyWindow([HEIGHT=h] [, WIDTH=w] [, RESOLUTION=dpi] [, TRANSPARENT=rgb] ...)
The copyWindow method returns a snapshot of the graphic’s window.

graphic::save [, HEIGHT=h] [, WIDTH=w] [, RESOLUTION=dpil
The save method saves the contents of the graphics’s window in an image file.

graphic::getData, argl, arg2, arg3, ... [, CONNECTIVITY=conn]
The getData method gets the data associated with the graphic. The number of parameters is based on the
number of arguments used when creating the graphic. Added in IDL 8.1.

graphic::setData, argl, arg2, arg3, ... [, CONNECTIVITY=conn]
The setData method sets the data associated with the graphic. The number of parameters is based on the
number of arguments used when creating the graphic. Added in IDL 8.1.

coords = graphic::convertCoord(x [, yl [, z] [/DATA] [, /NORMAL] [, /DEVICE]
[/TO DATA] [, /TO NORMAL] [, /TO DEVICE])
The convertCoord method converts between data, normal, and device coordinates in the graphic.

313

Object graphics — Function graphics

value = graphic::getValueAtLocation(x [, y] [, z] [, /DEVICE] [, /NORMAL] ...)

The getValueAtLocation method returns the closest data value to the specified point. The input coordinates are

assumed to be in data coordinates unless DEVICE or NORMAL are set. Added in IDL 8.1.

Xy = graphic::mapForward(lon [, lat] [, /RADIANS] ...)
The mapForward method transforms latitude/longitude coordinates to (x, y) coordinates.

lon _lat = graphic::mapInverse(x [, yl [, /RADIANS])
The mapInverse method transforms (x, y) coordinates to latitude/longitude coordinates.

graphic::order [, /BRING_FORWARD] [, /BRING TO FRONT] [, /SEND BACKWARD] [, /SEND TO BACK]
The order method controls the relative Z-order of graphics objects.
graphic::select
The select method selects the graphic in its window and brings the window to the front.
graphic::refresh [, /REFRESH]
The refresh method enables and disables the refreshing of the graphics window.
graphic::scale, x, vy, 2z
The scale method scales the graphic item in the x, y, and z dimensions.

graphic::rotate [, angle]l [, /DEFAULT] [, /RESET] [, /XAXIS] [, /YAXIS] [, /ZAXIS]
The rotate method rotates the graphic. It can reset the graphic’s orientation, set it to a default orientation, or

rotate the graphic the specified number of degrees around either the x-, y-, or z-axis. The default orientation is

30 degrees around the x-axis, 30 degrees around the y-axis, and -90 degrees around the x-axis.

graphic::translate [, x, y, z] [, /DATA] [, /DEVICE] [, /NORMAL] [, /RESET]

The translate method translates the graphic. It can reset the translation of the graphic or translate the graphic the

specified direction in data, device (the default), or normal coordinates.
See the online help for further details of these methods.

The MG_WIDGET_WINDOW_EXAMPLE widget program is an example of putting a function graphics plot into a
widget program. The widget creation routine for it uses the WIDGET_WINDOW function to create the equivalent of a
draw widget for function graphics plots. After the window widget is created and realized, then setting the CURRENT
keyword in the PLOT function call sends the output to the newly created window widget:

pro mg widget window example
compile opt strictarr

tlb = widget base(/column, $
title="'Example of using function graphics in a widget program')

toolbar = widget base(tlb, /row)
linestyles = ['solid', 'dot', 'dash', 'dash dot', 'dash dot dot dot', $
‘long dash', ‘'none']
linestyleDrop = widget droplist(toolbar, value=linestyles, uname='linestyle')
colors = strlowcase(tag names(!color))
colorsDrop = widget droplist(toolbar, value=colors, uname='color')

widget control, colorsDrop, set droplist select=7 ; black

graphic = widget window(tlb, xsize=600, ysize=300, uname='graphic', $
/button_events, /keyboard events, /motion events)

314

Object graphics — Function graphics

statusbar = widget text(tlb, scr_xsize=600, uname='statusbar')
widget control, tlb, /realize

; we don't need to get the function graphics window reference, but it can be
; obtained as usual if needed
widget control, graphic, get value=win

; create plot in function graphics window
p = plot(sin(findgen(360) * !dtor), /current, thick=2., font size=11)

state = { tlb: tlb, plot: p }
pstate = ptr_new(state, /no_copy)
widget control, tlb, set uvalue=pstate

xmanager, 'mg widget window example', tlb, /no block, $
cleanup='mg widget window example cleanup', $
event handler='mg widget window example event'

end

Note, our demo has to explicitly turn on the types of events the WIDGET_WINDOW should generate, in the same manner
as for WIDGET_DRAW. The above example demonstrates how the graphics window of the plot can be retrieved with the
GET_VALUE keyword of WIDGET_CONTROL in the usual manner, though it is not used. The object reference for the
plot itself is more useful, in general, so it is saved in the state structure.

The cleanup routine for our example only needs to free the pstate pointer; the plot object does not need to be freed
explicitly, it will be freed when its window is destroyed.

pro mg widget window example cleanup, tlb
compile opt strictarr

widget control, tlb, get uvalue=pstate

ptr free, pstate
end

Our demo generates events from the linestyle and color droplists, as well as the function graphic. The linestyle and
color events are used to modify the properties of the plot. The various mouse motion, mouse press/release, and keyboard
events from the WIDGET_WINDOW are identified by a message displayed in the status label.

pro mg_widget window_example_event, event
compile opt strictarr
on_error, 2

widget control, event.top, get uvalue=pstate
uname = widget info(event.id, /uname)

case uname of
'linestyle': (*pstate).plot.linestyle = event.index
'color': (*pstate).plot.color = !color.(event.index)
'graphic': begin
statusbar = widget info(event.top, find by uname='statusbar')
msg = "'
case event.type of
0: msg = string(event.x, event.y, format='(%"Button press at %d, %d")')
1: msg = string(event.x, event.y, format='(%"Button release at %d, %d")')
2: msg = string(event.x, event.y, format='(%"Mouse moved to %d, %d")')
5: msg = string(string(event.ch), format='(%"Key pressed: %s")")

315

Object graphics — Summary

6: begin
keys = ['none', 'shift', ‘'control', 'caps lock',6 'alt', $
'left', 'right', 'up', 'down', 'page up', $
'page down', ‘'home', 'end']
msg = string(keys[event.key], format='(%"Key pressed: %s")')
end
endcase

widget control, statusbar, set value=msg
end
else: message, 'unknown widget generating events'
endcase
end

See mg widget window example.pro in the example code for complete code listing.

For some time, there has been a third-party tool called TEXTOIDL which converted strings using a subset of the syntax
from the popular TeX typesetting system to IDL’s graphics format codes. In IDL 8.0, this capability is now built-in—just
enclose the TeX mathematics formatting in $ signs like you would in TeX:

IDL> w
IDL> t

window()
text (0.5, 0.5, 'The formula is: $e~{i\pi} + 1 = 0$', font size=24, alignment=0.5, /normal)

But this can be used anywhere in IDL with the TEX2IDL function (note that “to” is replaced by “2” in the ITT VIS

version), like:

IDL> print, tex2idl('The formula is: $e~{i\pi} + 1 = 0$')
The formula is: e!Uil!Mp!N + 1 =0
IDL> xyouts, 0.5, 0.5, tex2idl('The formula is: $e~{i\pi} + 1 = 0$'), /normal, alignment=0.5

For details on the syntax accepted, see the “Adding Mathematical Symbols and Greek Letters to the Text String” section
at the end of the online help for the TEXT function graphics function.

9.16. Summary

1. Object graphics is an object-oriented interface to OpenGL. If the rendering support of a graphics card is not
good, object graphics can use the Mesa 3D Graphics Library to emulate OpenGL in software.

2. Setting the VIEWPLANE_RECT property on a IDLgrView containing an image is the easiest way to control the
scaling of an image.

3. Use the [XYZ]COORD_CONYV properties of graphics items to scale 3-dimensional items into the view volume.
4. Objects are drawn from back to front so add the back items first if the front items are transparent.

5. Object graphics combine well with widget programs. Setup is not so onerous since the widget hierarchy must be
initialized as well and the persistent nature of the object graphics hierarchy matches well with interactive nature
of widget programs.

6. Seta WIDGET_DRAW’s GRAPHICS_LEVEL keyword to 2 to display object graphics in the draw widget.
Then the value of the draw widget returned from the GET_VALUE keyword to WIDGET_CONTROL will be an
IDLgrWindow object.

7. InIDL 8.0 and later, use function graphics as a convenient interface to object graphics.

References

316

Object graphics — Summary

Currently, [PowerGraphics] is the only IDL-specific third party book about object graphics in IDL (although [Primer]
is a quick reference guide with an object graphics section). [RedBook] is the definitive reference for OpenGL, the basis
for object graphics. [InfoVis] discusses interactive visualizations similar to combining object graphics with widget
programs.

[PowerGraphics] Ronn Kling. Power Graphics with IDL: A Beginners Guide to IDL Object Graphics. August 2002.
KRS, Inc..

Description of object graphics classes and their uses with examples.

[Primer] Ronn Kling. IDL Primer. May 14,2007. Kling Research and Software, Inc.

Quick reference guide for IDL topics including a section on object graphics.

[RedBook] OpenGL Architecture Review Board, Dave Shreiner, Mason Woo, Jackie Neider, and Tom Davis. OpenGL
Programming Guide: The Official Guide to Learning OpenGL, Version 2.1. August 9, 2007. Sixth edition. Addison-
Wesley Professional.

Object graphics is just an interface to OpenGL and the “Red Book” is the definitive reference for OpenGL
programming.
[InfoVis] Colin Ware. Information Visualization: Perception for Design (Interactive Technologies). April 7, 2004.

Second edition. Morgan Kaufmann.

Classic in the field of Information Visualization, the use of interactive computer-based visualizations.

317

318

